
http://www.ixsystems.com/

TrueNAS™ 2U Pro
Key FeATUreS

 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 12 Hot-Swap Drive Bays - Up to 36TB of
 Data Storage Capacity*
 . Periodic Snapshots Feature Allows You
 to Restore Data from a Previously
 Generated Snapshot
 . Remote Replication Allows You to
 Copy a Snapshot to an Offsite Server,
 for Maximum Data Security
 . Up to 4.48TB of Fusion-io Flash
 Memory
 . 2 x 1GbE Network Interface (Onboard)
 + Up to 4 Additional 1GbE Ports or
 Single/Dual Port 10GbE Network Cards

TrueNAS™ 4U Pro
Key FeATUreS

 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 24 or 36 Hot-Swap Drive Bays - Up to
 108TB of Data Storage Capacity*
 . Periodic Snapshots Feature Allows You
 to Restore Data from a Previously
 Generated Snapshot
 . Remote Replication Allows You to
 Copy a Snapshot to an Offsite Server,
 for Maximum Data Security
 . Up to 14.08TB of Fusion-io Flash
 Memory
 . 2 x 1GbE Network Interface (Onboard)
 + Up to 4 Additional 1GbE Ports or
 Single/Dual Port 10GbE Network Cards

JBoD expansion is available on the
2U and 4U Pro Systems

* 2.5” drive options available; please
consult with your Account Manager

Storage. Speed. Stability.

In order to achieve maximum performance, the TrueNAS™
Pro 2U and 4U Systems, equipped with the Intel® Xeon®
Processor 5600 Series, support Fusion-io’s Flash Memory
cards and 10GbE Network Cards. Titan TrueNAS™ Pro 2U and
4U Appliances are an excellent storage solution for video
streaming, file hosting, virtualization, and more. Paired with
optional JBOD expansion units, the TrueNAS™ Pro Systems
offer excellent capacity at an affordable price.

For more information on the TrueNAS™ 2U Pro and
TrueNAS™ 4U Pro, or to request a quote, visit:
http://www.iXsystems.com/TrueNAS.

TrueNAS™ Pro Storage Appliance:
You are the Cloud

With a rock-solid FreeBSD® base, Zettabyte File System support, and a powerful Web GUI, TrueNAS™

Pro pairs easy-to-manage software with world-class hardware for an unbeatable storage solution.

Expansion
Shelves

Available

Call iXsystems toll free or visit our website today!
1-855-GREP-4-IX | www.iXsystems.com
Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.

TrueNAS™ 2U Pro System

Clone
Snapshot

All
Volumes

Create Periodic Snapshot

TrueNAS™ 4U Pro System

http://www.ixsystems.com/

TrueNAS™ 2U Pro
Key FeATUreS

 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 12 Hot-Swap Drive Bays - Up to 36TB of
 Data Storage Capacity*
 . Periodic Snapshots Feature Allows You
 to Restore Data from a Previously
 Generated Snapshot
 . Remote Replication Allows You to
 Copy a Snapshot to an Offsite Server,
 for Maximum Data Security
 . Up to 4.48TB of Fusion-io Flash
 Memory
 . 2 x 1GbE Network Interface (Onboard)
 + Up to 4 Additional 1GbE Ports or
 Single/Dual Port 10GbE Network Cards

TrueNAS™ 4U Pro
Key FeATUreS

 . Supports One or Two Quad-Core or Six-
 Core, Intel® Xeon® Processor 5600 Series
 . 24 or 36 Hot-Swap Drive Bays - Up to
 108TB of Data Storage Capacity*
 . Periodic Snapshots Feature Allows You
 to Restore Data from a Previously
 Generated Snapshot
 . Remote Replication Allows You to
 Copy a Snapshot to an Offsite Server,
 for Maximum Data Security
 . Up to 14.08TB of Fusion-io Flash
 Memory
 . 2 x 1GbE Network Interface (Onboard)
 + Up to 4 Additional 1GbE Ports or
 Single/Dual Port 10GbE Network Cards

JBoD expansion is available on the
2U and 4U Pro Systems

* 2.5” drive options available; please
consult with your Account Manager

Storage. Speed. Stability.

In order to achieve maximum performance, the TrueNAS™
Pro 2U and 4U Systems, equipped with the Intel® Xeon®
Processor 5600 Series, support Fusion-io’s Flash Memory
cards and 10GbE Network Cards. Titan TrueNAS™ Pro 2U and
4U Appliances are an excellent storage solution for video
streaming, file hosting, virtualization, and more. Paired with
optional JBOD expansion units, the TrueNAS™ Pro Systems
offer excellent capacity at an affordable price.

For more information on the TrueNAS™ 2U Pro and
TrueNAS™ 4U Pro, or to request a quote, visit:
http://www.iXsystems.com/TrueNAS.

TrueNAS™ Pro Storage Appliance:
You are the Cloud

With a rock-solid FreeBSD® base, Zettabyte File System support, and a powerful Web GUI, TrueNAS™

Pro pairs easy-to-manage software with world-class hardware for an unbeatable storage solution.

Expansion
Shelves

Available

Call iXsystems toll free or visit our website today!
1-855-GREP-4-IX | www.iXsystems.com
Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.

TrueNAS™ 2U Pro System

Clone
Snapshot

All
Volumes

Create Periodic Snapshot

TrueNAS™ 4U Pro System

http://www.ixsystems.com/

10/20114

CONTENTS

Zbigniew Puchciński
Editor in Chief

zbigniew.puchcinski@software.com.pl

Editor in Chief:
Zbigniew Puchciński

 zbigniew.puchcinski@software.com.pl

Contributing:
Michael Shirk, Justin C. Sherril, Rob Somerville, Toby Richards,
Jasper Lievisse Adriaanese, Stavros N. Shaeles, Paul Ammann

Proofreaders:
Sander Reiche, Tristan Karstens

Special Thanks:
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Ewa Dudzic

ewa.dudzic@software.com.pl

Advertising Sales:
Zbigniew Puchciński

zbigniew.puchcinski@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

Mathematical formulas created by Design Science MathType™.

Dear Readers,
Let me present you with the new issue of BSD
magazine: The Inevitability of IPv6.

We start with Michael Shirk, and his article about
Con�guring a FreeBSD Stealth Logging Server and
news about FreeNAS™ Version 8.0.1 release.

As always you will also �nd news from Dragon�yBSD
brough by Justin C. Sherrill.

This month’s How Tos include another part of GIS
series written by Rob Sommerville, and two ONMP
articles from Toby Richards. They are followed by
Jasper Lievisse Adriaanese LibGTop article – a brief
introduction to this handy library.

You will also �nd a piece of advice in protecting
from DDoS attacks given by Stavros N. Shaeles – in
Security section of the magazine.

In the end we present the cover story (or stories)
of the isse – Inevitability of IPv6 written by Paul
Ammann – two articles which will convince you that
switch to IPv6 is Inevitable.

We all hope you will enjoy the reading and �nd it
informative – make sure to make it before November
issue hits!

Yours,

Contents

Tips & Tricks
Taking a Peek Under the Hood Without
Compromising Security – LibGTop and
OpenBSD
Jasper Lievisse Adriaanse

LibGTop allows developers to peek under the hood of the
kernel and export lots of system data in a convenient and
easy to use library.

Security
Protecting Apache From Dos And Ddos
Attacks
Stavros N. Shaeles

DOS (Denial of Service) or DDOS(Distributed Denial
of Service), it is an attack where multiple compromised
systems (which are usually infected with a Trojan) are
used to target a single system in attempt to make the
system resources(cpu,memory,network) unavailable to its
intended users and causing system to crash.

IPv6
The Inevitability of IPv6, Part 1
Paul Ammann

A switch from IPv4 to IPv6 is on your horizon. Are you
ready for it?

The Inevitability of IPv6, Part 2
Paul Ammann

Configure IPv6 in your network – even if your routing
infrastructure doesn’t yet support it.

What’s New
06 iXsystems Announces Release of
FreeNAS™ Version 8.0.1
Josh Paetzel

Release features back end changes and bugfixes, as well
as new front end user features

Configuring a FreeBSD Stealth Logging
Server
Michael Shirk

The collection of log files provides security administrators
with the ability to have an audit trail for the behavior of
an information system. In the event that a system is
compromised, remote logging provides a forensic trail to
determine what occurred on the system.

Developers Corner
DragonflyBSD news: Recovering data
with hammer
Justin C. Sherrill

It’s been a while since we had a straightforward news
report for DragonFly; the time since then has been filled
with reports on Hammer and bulk pkgsrc builds.

How Tos
Using Openmaps data with Geoserver
Rob Somerville

In this article in our GIS series, we will examine
how to import Openmaps data. Open Street Map
(openstreetmap.org) founded in July 2004 by Steve
Coast, is a treasure trove of worldwide street maps
available under the Creative Commons licence.

ONMP on OpenBSD 4.9
Toby Richards

OpenBSD is my BSD of choice. In fact, it is my OS of
choice wherever possible. I always challenge those who
disagree with me to name another OS with a similar track
record for security.

OSSEC on OpenBSD (ONMP) 4.9
Toby Richards

It is worth saying up front that these instructions assume
that you’re running Nginx compiled from source vice
Apache or Nginx from Ports or Packages.

06

08

12
26

14

20

42

32

36

24

10/20116

The FreeNAS™ Team has announced the release
of FreeNAS™ Version 8.0.1. FreeNAS™ 8.0.1
represents a major leap in functionality and

stability for FreeNAS™ 8. Features added to FreeNAS™
in the 8.0.1 branch include S.M.A.R.T. and UPS services,
USB 3.0 support, and OSX Lion AFP and Time Machine
compatibility. In addition, cronjob support and rsync have
been added to the GUI, and replication has been improved
for increased data integrity.

In addition to the many back end changes and
bugfixes, FreeNAS™ 8.0.1 also includes new front end
user features. A new stoplight icon in the top right of the
GUI functions as an alert system, keeping administrators
in tune with the overall health of their installation. This
icon is visible from every page of the GUI, and will
change color in keeping with the condition of the system
as indicated by the alert messages. Clicking the icon
brings up a dialogue outlining which messages have
keyed the alert.

The stoplight system will be most noticeable to new
users and administrators booting a fresh install. As of
8.0.1, FreeNAS™ no longer has a default password,
which will cause the alert light to flash red until one is
added. This has the added security benefit of blocking
SSH or root shell access until a root password is set by
the administrator. The GUI also now includes a checkbox

to set the root user shell password to be the same as the
webGUI administrator’s password, if desired.

8.0.1 includes another less immediately obvious, but
still notable update – the ZFS deletion system now
actually functions as a volume export utility. “Deleted”
ZFS volumes can be added through the volume importer
until the member disks are eventually reused in another
volume. For the security-conscious, the GUI has an option
to wipe the disks on deletion rather than leaving them
usable, as well as an option to prevent the volume deletion
from cascading over and affecting shares attached to the
deleted volume.

Another important back end change in 8.0.1 is support
for arbitrary mount points for UFS volumes. The size
of the FreeNAS™ boot device no longer sets a cap on
the size of the /var slice, if properly exported to another
storage volume. While this only affects a small number
of users in specific applications, this is an important
milestone for users with large amounts of temporary
data to cache, such as an Active Directory’s ‘users and
groups’ data.

“8.0.1 represents a significant advancement towards the
goals outlined by the current FreeNAS™ roadmap,” says
Josh Paetzel, Director of IT at iXsystems. “With all the
significant issues addressed, FreeNAS™ development
will be able to better focus on total feature parity with

iXsystems Announces Release
of FreeNAS™ Version 8.0.1
Release features back end changes and bugfixes,
as well as new front end user features

www.bsdmag.org

Version .7, rather than just solid completion for existing
new features.”

Eventually, with the final release of FreeNAS™ 8.0.1,
development will shift to the 8.1 branch, which will add a
third-party plug-in system. The plug-ins will use a variation
on the PBI system pioneered by PC-BSD®. Through
plugins, FreeNAS™ 8 will be able to support most or
all of the features that were part of FreeNAS™ .7 (such
as BitTorrent and UPNP) while keeping the base install
image slim for those who only want the core functionality
of FreeNAS™. Version 8.1 will also feature a supported
upgrade path from FreeNAS™ .7.x.

JOSH PAETZEL
Josh Paetzel – A 37 year old advocate, user and developer of BSD
UNIX based systems. he resides in Minneapolis, Minnesota, USA
where he hacks on FreeBSD and PC-BSD, both as a volunteer and
as part of his full time work as the Director of IT at iXsystems.

About FreeNAS™ 8
FreeNAS™ is a free and open
source Network Attached Storage operating system based
on FreeBSD. The goal of the project is to design a lightwe-
ight, BSD-based software package that acts as a full featured
NAS server, complete with a Django-based web user interfa-
ce, full ZFS implementation, and the ability to interface per-
fectly with existing networks – regardless of operating system
or protocol.

About iXsystems
iXsystems is the all-around
FreeBSD® company that bu-
ilds FreeBSD-certi�ed servers
and storage solutions, over-
sees FreeNAS™ development,
and is the corporate spon-
sor of the PC-BSD® Project. iXsystems is an employee-owned
and operated, open source-centric, customer focused organi-
zation, dedicated to providing the highest quality built-to-or-
der enterprise rackmount server solutions, pre-con�gured se-
rver appliances, and scalable storage solutions to our custo-
mers around the globe.

http://www.bsdcertification.org

10/2011 8

GET STARTED Configuring a FreeBSD Stealth Logging Server

www.bsdmag.org 9

The remote log files maintain the integrity of the
original system logs as the compromised host can
no longer be trusted. Going beyond a normal log

server is the configuration of a stealth log server which

doesn’t interact with the network it is monitoring much
like an intrusion detection system. Because the system
is not accessible to the network, it is nearly impossible
beyond physical access to compromise the logging
system.

Syslog has been the standard for system logging since
its inception along side sendmail back in the 1980’s.
syslogd is normally the service used to handle the system
logging in most *nix based operating systems. Updated
services include syslog-ng and rsyslog which provide
finer grained controls over the log messages. One of the
important features of any syslog daemon is the ability to
forward log files to a remote host. Normally, a remote

Configuring
The collection of log files provides security administrators
with the ability to have an audit trail for the behavior
of an information system. In the event that a system is
compromised, remote logging provides a forensic trail to
determine what occurred on the system.

a FreeBSD Stealth Logging Server

What you will learn…
• A con�guration for out-of-band remote logging

What you should know…
• Basic FreeBSD knowledge to navigate the command line
• Basic knowledge of how tcpdump and syslog work

Figure 2. Stealth Logger setup on Hub or SPAN port

������������

������
������� ����������

���������������
������������������
���������������

��������

���������������
���������������

��������������������

Figure 1. Normal Syslog Remote Logging Setup

������������

������
������� �������������

�������������
����������������
�����������

10/2011 8

GET STARTED Configuring a FreeBSD Stealth Logging Server

www.bsdmag.org 9

intrusion detection and preventions systems in regards
to establishing a separation between the monitoring and
management network. It is a mistake to have interfaces
configured on the same network that is being monitored
due to the risk of possible exploitation of a vulnerability
giving access to backdoor the system. One solution is

server accepts connections on UDP port 514 and writes
out log files as show below in Figure 1.

If the system was compromised in this case, the
remote logging server would have a record of the system
logs before the attacker gained control of the system.
The question is, what happens if the logging system
itself is compromised? This is the same issue faced by

Figure 3. VMware setup with Two VM’s and the logging

��� ���

��������

�����������������������
�������������������������

Figure 4. Promiscuous Mode Settings in VirtualBox

Listing 1. The following steps makes sure the em1 interface is in promiscuous mode without an IP address upon

ifconfig em1 promisc up

echo 'ifconfig_em1="promisc up"' >> /etc/rc.conf

Listing 2. The following is the stealth_logger script that is called as a cronjob. The interface is passed into the script. The example interface
here is em1

#!/bin/sh

Kill all TCPDUMP processes

/usr/bin/killall -9 tcpdump 2>/dev/null

Start off with date setup and make a directory for each hour

YEAR='date "+%Y"';

MONTH='date "+%m"';

DAY='date "+%d"';

HOUR='date "+%H"'

MIN='date "+%M"'

WORKDIR="/var/log/stealth_logger/$YEAR/$MONTH/$DAY/$HOUR"

mkdir -p $WORKDIR

Read interface to listen on

INTF=$1

Run packet capture for syslog packets, saving at max

50 20MB pcap files per hour

(tcpdump -C 20 -W 50 -w $WORKDIR/SYSLOG_ -XXnns 0 -i $INTF udp and port 514)

echo

echo "Log Started: $MONTH/$DAY/$YEAR $HOUR:$MIN"

echo

Exit to make cron happy exit 0

10/2011 10

GET STARTED

to setup a stealth logging server with an interface in
promiscuous mode to sniff the syslog packets out-of-
band. This is shown in Figure 2.

Because of the UDP protocol being connectionless, the
destination of the syslog messages can be any type of
device, even a printer. The promiscuous interface on the
stealth log server will receive all of the traffic. An extra
security step for the paranoid is to disable the transmit
pair on the Cat5 cable, preventing any chance of the
server sending packets out.

In the case of virtual machines, a FreeBSD VM can be
given an interface with Promiscuous Mode in VMware or
Virtualbox to allow all of the traffic on the virtual switch to
be monitored. Figure 3 gives the example for VMware.

The first thing that needs to be completed is the install
of FreeBSD. All of the steps listed were performed on
a Virtual Machine with a FreeBSD minimal install with
the ports tree (See FREEBSD-INSTALL for installation
instructions). Using VirtualBox, navigate to the Settings-
>Network->Advanced as shown in Figure 4.

Once this has been completed, startup the VM and
login as root. All of the commands are to be run with
an administrative account (using sudo if preferred). Run
the commands in Listing 1 to enable promiscuous mode
for the interface to be used. In this example, the Stealth
Logger is connected to an Internal network with several
other devices on interface em1.

Listing 2 is a simple script to log syslog packets on UDP
514 into a directory structure based on the year/month/
day/hour. Running this in cron hourly will keep a record for
each hour of log data.

Listing 3 is the process to add the hourly log rollover for
tcpdump which will create is a simple script to log syslog
packets on UDP 514 into a directory structure based on

the year/month/day/hour. Running this in cron hourly will
keep a record for each hour of log data.

The stealth log server will continue to collect any syslog
traffic that is seen and log it into /var/log/stealth_logger
(with the default script settings). In a later article, additional
details will be provided for setting up Snare on Microsoft
Windows and syslog-ng/rsyslog on other BSD and Linux
operating systems to send to the log server. In addition
to the configuration, parsing tools will be demonstrated to
utilize the log data. Example output from the syslog data
is displayed in Listing 4. In this example, the testuser has
failed to login as root.

Listing 3. Run the following to add a cronjob to rotate the packet capturing every hour. The example interface used here is em1

echo "# Rotate the packet capture every hour" >> /etc/crontab

echo "0 * * * * root exec /usr/local/bin/stealth_logger em1" >> /etc/crontab

Listing 4. Example parsing output of Syslog data:

NOTICE: Sep 4 11:15:23 ubuntu-server su[4764]: - /dev/tty1 testuser:root

NOTICE: Sep 4 11:15:23 ubuntu-server su[4764]: FAILED su for root by testuser

NOTICE: Sep 4 11:15:24 ubuntu-server su[4765]: pam_unix(su:auth): authentication failure; logname=root uid=1000

euid=0 tty=/dev/tty1 ruser=testuser rhost= user=root

NOTICE: Sep 4 11:15:26 ubuntu-server su[4765]: - /dev/tty1 testuser:root

NOTICE: Sep 4 11:15:26 ubuntu-server su[4765]: FAILED su for root by testuser

MICHAEL SHIRK
Michael Shirk is a BSD zealot who has worked with OpenBSD and
FreeBSD for over 6 years. He works in the security community
and supports Open-Source security products that run on BSD
operating systems. He wishes to thank Thomas Conway and J.J.
Cummings for testing the instructions in this article.

References
• FREEBSD-INSTALL: http://www.freebsd.org/doc/handbook/

install-start.html
• VirtualBox: http://www.virtualbox.org

http://www.freebsd.org/doc/handbook/install-start.html
http://www.freebsd.org/doc/handbook/install-start.html
http://www.virtualbox.org

http://www.dotlike.net/

10/2011 12

Recovering data with hammer

www.bsdmag.org 13

In fact, we’ve managed to cover the
whole space between releases, since
the last news

report like this in BSD
Magazine was just
after the 2.10 release of
DragonFly. DragonFly
follows an even/odd
stable/development cycle. 2.11 is the
development version at this time. DragonFly 2.12
is due to start the release process very soon, and the
development version will be 2.13.

You can think of this as a what’s in the next release
of DragonFly report. I’m totally going to use these notes
when writing the 2.12 release notes, in fact.

Encryption
The encryption framework in DragonFly has seen a
major upgrade. Alex Hornung has added libdm, a BSD-
licensed equivalent of Linux’s libdevmapper, and a
utility called tcplay. This new utility is compatible with
TrueCrypt, so you can create encrypted volumes, hide
them, and so on. See truecrypt.org for more details on
what is supported. In any case, encrypting your date
automatically and reading/writing it as encrypted data on
the fly is now possible.

Google Summer of Code results
DragonFly participated in Google

Summer of Code for
the 4th year in a row,
supplying mentors
for college student

working on DragonFly-
linked projects.

We had 6 projects total, with 5 of them
passing. (One student went AWOL at the end.)

Some of the code has made it to DragonFly, and should
show up in the 2.12 release.

Here’s all the finished projects.

• Bring kernel event notification in DragonFly BSD to its
logical conclusion Samuel Greear

Recovering data with
hammer
It’s been a while since we had a straightforward news report for
DragonFly; the time since then has been filled with reports on
Hammer and bulk pkgsrc builds.

Figure 1. Fuzzer

10/2011 12

Recovering data with hammer

www.bsdmag.org 13

• Implementing a mirror target for device mapper Adam
Hoka

• Improve dsched interfaces and implement BFQ disk
scheduling policy Brills Peng

• Port PUFFS from NetBSD/FreeBSD Nick Prokharau
• Porting Virtio Drivers from NetBSD to DragonFly

BSD to speed up DragonFly BSD as a KVM guest
Stephanie Ouillon

pkgsrc
The next quarterly release of pkgsrc is due very soon.
It will be 2011Q3, for all platforms that
pkgsrc supports, including DragonFly.
As is customary, binary packages for
DragonFly will be built to go with the 2.12
release, though they may not be available
at release time. It usually takes several
weeks to build the 10,000+ packages in
pkgsrc.

The packages from
pkgsrc-2011Q1 are still the
default for DragonFly, both
for binary installs and from
source builds. Why haven’t
we switched to 2011Q2? There’s a slight chicken-and-
egg problem. Pkgsrc will not install binary packages built
with a newer version of pkg_install, so downloading and
installing packages from a newer quarterly release will
fail, with an error. (Get ready for a digression.)

DragonFly has a tool that comes with the install, called
pkg_radd. It sets $PKG_PATH to the appropriate path on a
remote server for that system’s release version and
processor architecture, and downloads pkgsrc binaries
using pkgsrc’s pkg_add. This is very nice for installation,
and even upgrading installed packages, but changing the
default packages for DragonFly to a new quarterly release
means that any further binaries installed will error out on
that pkg_install version issue.

The fix is to force-upgrade pkg_install, since binary
packages usually exist for it, or if building from source, use
‘bmake package’ and upgrade using the binary built from
that. As an alternative, the binary package management
tool, pkgin, will be able to handle this circumstance in
version 0.5, though that version will not make it into
DragonFly 2.12.

In other news, DESTDIR support in pkgsrc is almost
complete for all packages. Support of DESTDIR means
that packages can be installed as non-root, and the
remaining 40 or so stragglers are mostly software no
longer maintained by the original creators.

Java users will notice the 1.6 JDK now runs on
DragonFly, as does OpenJDK7, thanks to Francois
Tigeot. (OpenJDK is i386 only)

Hardware support
There’s been updates for various network card and other
hardware in the time between DragonFly 2.10 and now,
either original or brought in from other BSDs. Broadcom
and Marvell now have more supported chipsets, thanks
to the efforts of Michael Neumann and Sepherosa
Ziehau. If that’s still leaving you with an unsupported

network card, Sascha Wildner has updated
ndis, which may support an otherwise
unavailable network card by use of
information from the Microsoft Windows
version of a driver. Sascha Wildner has
also updated the drivers for the LSI

MegaRAID SAS 92xx series of RAID
cards, along with the HighPoint

RocketRAID. The SafeNet
crypto hardware accelerator
chip is supported now too.
DragonFly’s interrupt routing

has been thoroughly upgraded
by Sepherosa Ziehau, so newer models that do not work
for you with DragonFly 2.10, or did not play well with
different ACPI modes, may perform better. Also, as a sign
of the times, support for certain ISA devices was removed
entirely. Some of these devices were in the default kernel
config, so remove them manually if you use a custom
kernel configuration and are upgrading from 2.10 to 2.12.
Goodbye (most of) ISA; nobody will miss it at this point.

Benchmarks of 2.10 vs. 2.11
Francois Tigeot ran some disk benchmarks, comparing
HAMMER on DragonFly 2.10, Hammer on DragonFly
2.11, and ZFS on OpenIndiana. The ZFS numbers show a
difference in activity. The performance difference between
the two different version of DragonFly is noticeable, and
should be a good experience for anyone upgrading.

JUSTIN C. SHERRILL
Justin Sherrill has been publishing the DragonFly BSD Digest
since 2004, and is responsible for several other parts of
DragonFly that aren’t made out of code. He lives in the northeast
United States and works over a thousand feet underground.

10/2011 14

HOW TO’S Using Openmaps data with Geoserver

www.bsdmag.org 15

Unfortunately, some of the maps do not give
complete coverage so consideration should be
given to the suitability of using this data in mission

critical or production environments. That said, living in a
fairly remote part of the UK I was pleasantly surprised by
the accuracy of the street map, I was expecting many
more errors than I found, mostly missing street names
from areas well off the beaten track.

The sheer quantity of map data available is enormous
– the full planet PBF file is 14Gb which expands to
> 110Gb when extracted, so unless you have lots of

storage, bandwidth and time, a subset is a more practical
approach. Weekly updates are available in diff format.
For this article, I have used map data for Kentucky, which
was a reasonable 220Mb uncompressed. Even that data
set pushed my Virtualbox Geoserver to the limit as I only
have a twin processor PC with 4GB of RAM. There is an
OSM plugin available for QGIS covered in the previous
article, so the map data can be manipulated albeit in a
rudimentary fashion as the plugin is still in the early stages
of development.

As a lot of this code will not fit easily on a page, I am
using the convention ? to denote a carriage return.

Using Openmaps data
with Geoserver
Open Street Map (openstreetmap.org) founded in July 2004
by Steve Coast, is a treasure trove of worldwide street maps
available under the Creative Commons licence.

What you will learn…
• How to create street maps of any region of the world

What you should know…
• Basic FreeBSD administration skills, Previous FreeBSD GIS tutorials in

this series

In this article in our GIS series, we will examine how to
import Openmaps data

Listing 1. Installing bzip2

 pkg_add -r bzip2

Listing 2. Extracting the �les

 cd /geodata/OSM

 bunzip2 kentucky.highway.osm.bz2

 bunzip2 kentucky.administrative.osm.bz2

 bunzip2 kentucky.coastline.osm.bz2

Figure 1. Creating the Workspace

10/2011 14

HOW TO’S Using Openmaps data with Geoserver

www.bsdmag.org 15

Choosing and downloading your maps
Visit http://downloads.cloudmade.com and download the
OSM map of your choice. Cloudmade also has TomTom
and Adobe Illustrator maps available, but we will be using

Pre-requisites
You will need a working Geoserver installation with
Postgres / PostGIS extensions and optionally QGIS
running in a workstation for editing the map data.

Listing 3. Sample OSM XML �le

 head kentucky.osm

 <?xml version='1.0' encoding='UTF-8'?>

 <osm version="0.6" generator="Osmosis 0.36">

 <bound box="36.39672,-89.67530,39.24822,-81.85895" ◄ origin="http://www.openstreetmap.org/api/0.6"/>

 <node id="300559" version="1" timestamp="2005-12-08T19:18:38Z" ◄

 changeset="1000" lat="38.2830757" lon="-85.9401045"/>

 <node id="14827169" version="2" timestamp="2010-11-14T18:44:23Z" uid="9176" ◄ user="Maarten Deen"

changeset="6369617" lat="39.031468" lon="- ◄ 84.575264"/>

 <node id="14832854" version="2" timestamp="2010-11-14T18:44:23Z" uid="9176" ◄ user="Maarten Deen"

changeset="6369617" lat="38.989377" lon="- ◄ 84.577611"/>

 <node id="16249577" version="2" timestamp="2010-07-24T00:16:43Z" ◄

 uid="120468" user="Gone" changeset="5300041" lat="39.110063" lon="-◄ 84.502348">

Listing 4. Updating the ports tree and installing OSM2PGSQL

 portsnap fetch

 portsnap update

 cd /usr/ports/converters/osm2pgsql/ && make install clean

Listing 5. Installing LIBTOOL

 pkg_delete -f libtool-2.2.10

 cd /usr/ports/devel/libtool/ && make install clean

 ln -s /usr/local/share/osm2pgsql/default.style ◄

 /usr/local/share/default.style

Listing 6. Creating the database

 su pgsql

 createdb OSM

 createlang plpgsql OSM

 psql -d OSM -f /usr/local/share/postgis/contrib/postgis-1.5/postgis.sql

 psql -d OSM -f /usr/local/share/postgis/contrib/postgis-1.5/spatial_ref_sys.sql

 exit

Listing 7. Importing the data

 /usr/local/bin/osm2pgsql -d OSM -U pgsql kentucky.highway.osm

 /usr/local/bin/osm2pgsql -d OSM -U pgsql kentucky.administrative.osm

 /usr/local/bin/osm2pgsql -d OSM -U pgsql kentucky.coastline.osm

http://downloads.cloudmade.com

10/2011 16

HOW TO’S

www.bsdmag.org

the OSM format for import into Geoserver. Once you
have downloaded transfer the .bz2 archives across to the
Geoserver box using SSH or MC etc. In this example I
have placed them in the /geodata/OSM directory.

Extracting and converting the files
Install bzip2 using the package manager (Listing 1).
Extract the archives (Listing 2). Examining the files we will
find that they are in standard XML format (Listing 3).

We now need to install osm2pgsql to import the files into
Postgresql (Listing 4).

If you receive an error concerning the libtool version,
you will need to upgrade libtool to version 2.4 (Listing 5).

Create the database in Postgres and make it spatially
aware (Listing 6).

The next step is the actual import itself. The resulting
XML files will be resident in the OSM database
(Listing 7).

Figure 2. Creating the Data Source

Figure 3. Prompt to publish after creating store

Figure 4. Computing the Bounding Box

Figure 5. Repeat and publish each layer

Table 1. Postgis Store parameters

Field Value
Workspace Kentucky

Data Source Name OSM-Kentucky

Description OSM Kentucky Data

Host localhost

Port 5432

Database OSM

Schema public

user pgsql

Passwd Your PGSQL password (I used pgsql in the
demo)

10/2011 16

HOW TO’S

www.bsdmag.org

The open street maps data will now have been imported
into Postgresql. This will take about 20 minutes depending
on the speed of your server.

Configuring Geoserver
Create a workspace called Kentucky with a dummy url
pointing to http://localhost/kentucky (Figure 1).

Figure 8. Roads layer for Kentucky

Figure 6. Creating a layer group with polygon and roads

Figure 7. Polygon and Roads layer for Kentucky

http://localhost/kentucky
http://bsdmag.org

10/2011 18

HOW TO’S

Create the PostGIS Vector datastore for the Kentucky
Workspace (Figure 2, Table 1).

Geoserver will now prompt you to publish the layers.
Publish each layer in turn, computing both bounding boxes
Lat/Lon and Native. N.B: If you find that the layer preview
seems inaccurate, recalculate bounding box. I found this
cured an inaccuracy in the layers. I also downloaded and
imported the kentucky.osm, but from what I can see this is
the complete set of maps, roads and lines etc. and doesn’t
need to be loaded. You will have to revisit the layers and
add the remaining 3 layers from Kentucky: OSM-Kentucky
(Figure 3 – 5).

Layer groups
If you have lots of processing power at hand, you can
create a layer group (Figure 6). You may have to reorder
the layers accordingly, so the correct layer in on top. On
my VM, I was only able to group together polygon and
roads before Geoserver gave up after 60 seconds trying
to serve the map (Figure 7). While you can adjust the
time-out value in ../data/wms.xml, maybe I should have
picked a smaller US state!

Regardless of layer groups, the layers are now ready
for styling, which was covered in a previous article (Figure
8 – 11).

I did finally manage to get my PC to process the lines
and points group layer, but I had to add an extra CPU to
the VM (Figure 12).

Figure 12. Lines and Points layer (X2 CPU)

Figure 11. Lines layer for Kentucky (Zoomed in)

Figure 9. Polygon layer for Kentucky

Figure 10. Points layer for Kentucky

ROB SOMERVILLE
Rob Somerville has been passionately involved with technology
both as an amateur and professional since childhood. A
passionate convert to *BSD, he stubbornly refuses to shave
of his beard under any circumstances. Fortunately, his wife
understands him (she was working as a System/36 operator
when they �rst met). The technological passions of their
daughter and numerous pets are still to be revealed.

http://www.freebsdmall.com

10/2011 20

HOW TO’S

www.bsdmag.org

We’ve all heard of LAMP (Linux Apache MySQL
PHP). My web server of choice happens to be
Nginx, not Apache. My BSD server in the cloud

isn’t very beefy. It’s a VPS with 512MB RAM. Nginx, being
much easier on resources than Apache seems to be the
best choice for me. Creating an OpenBSD Nginx MySQL
PHP (ONMP) server was my first goal upon starting to
teach myself OpenBSD.

Before we begin a by-the-numbers tutorial on creating an
ONMP server, I’d like to give a plug for my hosting provider:
bsdvm.com. This is the only BSD hosting provider that I
could find who gives you access to the VMware console to
your server. This makes it easy to re-install your OS from
scratch, and specifically customized for your own needs.

Let’s get started
Step 1
Let’s install MySQL, wget, PHP (Fast CGI), and several
core PHP modules from the packages system. Users of
other BSD systems will be appalled that I’m not using the
ports. Unlike certain other BSD’s, OpenBSD recommends
packages over ports. Be sure to have set your PKG_PATH
environment variable:

pkg_add wget mysql-server php5-core php5-fastcgi php5-

mysql php5-mysqli \

php5-pdo_mysql php5-mcrypt php5-mhash

I’m trying to run this as lean as possible. I chose not
to (for now) install the popular (but very large) php5-
mbstring which gives PHP unicode support.

At the moment, I don’t plan on needing to serve up any
language or symbol that isn’t included in ASCII.

Step 2
Fix MySQL & PHP discrepancies.

Step 2a
Create the default databases because pkg_add didn’t do
that for you.

mkdir /var/mysql && chown -R _mysql:_mysql /var/mysql

mysql_install_db

Step 2b
Enable the PHP modules. The official documentation says
to make symbolic links.

I prefer to copy the files so that I can always reference
the original sample files.

cp /var/www/conf/php5.sample/*.ini /var/www/conf/php5/

Step 2c
Uncomment #cgi.fix_pathinfo=0 in /var/www/htdocs/conf

/php.ini.

ONMP on OpenBSD 4.9

OpenBSD is my BSD of choice. In fact, it is my OS of choice
wherever possible. I always challenge those who disagree
with me to name another OS with a similar track record for
security.

What you will learn…
• How to build an OpenBSD/Nginx/MySQL/PHP (ONMP) server from

a freshly installed OpenBSD system.

What you should know…
• How to use the command line.
• How to set environment variables.
• The difference between OpenBSD vs. other BSD’s.

http://bsdvm.com

10/2011 20

HOW TO’S

www.bsdmag.org

Step 3
Install Nginx. Unfortunately, OpenBSD 4.9’s Package/Ports
system comes with a pre 1.0 version of Nginx. I don’t like
that, so I’m going to compile Nginx 1.0.6 from source:

Step 3a
First we need pcre

pkg_add pcre

Step 3b
Install Nginx with OpenSSL in case we want to use
certificates later.

cd ~

wget http://nginx.org/download/nginx-1.0.6.tar.gz

tar xvfz nginx-1.0.6.tar.gz

rm -f nginx-1.0.6.tar.gz

cd nginx-1.0.6

./configure --with-openssl=/usr/include/openssl

make && make install

Step 4
Reconcile OpenBSD’s html root with Nginx’s. Nginx puts
the html root at /usr/local/nginx/html. OpenBSD (and the
PHP package) expect /var/www/htdocs/. There are many
ways that you might choose to fix this, but the easiest is to
simply create a symlink:

rm -Rf /var/www/htdocs

ln -s /usr/local/nginx/html /var/www/htdocs

Step 5
Configure Nginx for PHP.

Step 5a
Uncomment the following lines in /usr/local/nginx/conf/
nginx.conf except for root html;

#location ~ \.php$ {

Do not uncomment this line: # root html;

DO uncomment these lines

fastcgi_pass 127.0.0.1:9000;\

fastcgi_index index.php;\

fastcgi_param SCRIPT_FILENAME /scripts$fastcgi_script_

name;

include fastcgi_params;\

#}

http://bsdmag.org

10/2011 22

HOW TO’S

Step 8
Configure MySQL to start at boot time. I really don’t know
why, but the default scripts from packages in /etc/rc.d.
don’t work. In fact, through four re-installations of OpenBSD
4.9, I have yet to see any script from any package in /etc/
rc.d function. We need to start everything in /etc/rc.local
instead (even though we’re launching MySQL as root,
mysqld_safe will automatically run as _mysql:

rm -f /etc/rc.d/mysqld

Add the following to etc/rc.local:

if [-x /usr/local/bin/mysqld_safe]; then

 echo -n ‘ nginx’; /usr/local/bin/mysqld_safe &

fi

Step 9
Let’s let /etc/rc.local do it’s magic now. Reboot. Then re-
logon, and gain a root prompt (sudo -s).

Step 10
Let’s give the root user of MySQL a password:

mysqladmin -u root password <password>;

Step 11
Check Nginx & PHP. We’re going to create a phpinfo() file.
WARNING! This is insecure. Having a phpinfo file is a security
risk. Do not host this file in a production environment!:

echo „<?php phpinfo(); ?>” > /var/www/htdocs/phpinfo.php

Now… from your laptop or whatever, go to http://<your
server>/phpinfo.php. If you’ve done everything right so
far, then you see a nice web page that tells you all about
your server’s PHP configuration.

Congratulations. You have a working and secure ONMP
server!

Step 5b
Change fastcgi_param SCRIPT_FILENAME /scripts$fastcgi_

script_name; to fastcgi_param SCRIPT_FILENAME $document_

root$fastcgi_script_name; in /usr/local/nginx/conf/nginx.conf.

Step 5c
Insert fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_
script_name; just above fastcgi_param SCRIPT_NAME $fastcgi_
script_name; in /usr/local/nginx/conf/fastcgi_params.

Step 5d
The Nginx official pitfalls page (http://wiki.nginx.org/Pitfalls)
Section 1.2 (as of this writing) tells us where to put the root
html; directive. Comment out every instance of root html;,
and then insert that directive just below these lines:

 server {

 listen 80;

 server_name localhost;

Step 5e
The pitfalls page also recommends that we move the index
directive to avoid needing multiple index directives later.
Comment out the line in /usr/local/nginx/conf/nginx.conf
index index.html index.htm; Add this modified version of the
line (which includes index.php) just below the http { line:
index index.php index.html index.htm;.

Step 6
Configure Nginx to start at boot time. I spent some time
trying to figure out how to jail Nginx with chroot. I couldn’t
make it work because it always complained of not having
access to the library files in various /usr/ subfolders that
it needed. I suppose that’s ok because while the Nginx
master process runs as root, then Nginx worker process
runs as nobody. Add the following to /etc/rc.local (unlike
with GNU/Linux, /etc/rc.local is the official way to start
custom daemons in OpenBSD):

if [-x /usr/local/nginx/sbin/nginx]; then

 echo -n ‘ nginx’; /usr/local/nginx/sbin/nginx

fi

Step 7
Configure PHP-FastCGI to start at boot time. We can’t
jail PHP to a particular directory, but we can use chroot to
make PHP run as nobody. Add this to /etc/rc.local:

chroot -g nobody -u nobody / env -i PHP_FCGI_CHILDREN=5 \

PHP_FCGI_MAX_REQUESTS=1000 \

/usr/local/bin/php-fastcgi -q -c /etc/php5 -b 127.0.0.1:9000 &

TOBY RICHARDS
Toby Richards has been a network administrator since 1997. He
considers himself to be a jack of all operating systems, but a true
master of none. He feels this to be a mastery in its own right since
he understands principles that are common to all operating
systems. His articles are the product of teaching himself to
become better with OpenBSD and PC-BSD. He simply writes
about what he has learned most recently. For a hosting provider,
he highly recommends bsdvm.com. They give you access to your
VMware console so that you can re-install your OS at will, and
with the settings of your own choosing.

http://wiki.nginx.org/Pitfalls

http://www.ateamsystems.com/FreeBSD

10/2011 24

HOW TO’S

Anyone comfortable on the *nix command line
ought to easily know how to modify this guide to
suit his or her particular operating system & choice

of web server software.
OSSEC is a host intrusion prevention system (HIPS).

It is open source, and sponsored by Trend Micro. It can
notify you when important files change. It can temporarily
(10 minutes by default) block IP addresses that do
questionable stuff like:

• Try to browse to URL’s with /../ in them, such as http:
//yourserver/../../etc/master.passwd ten times in two
minutes or less.

• Enter bad username/password combos via SSH ten
times in two minutes or less.

• Invoke ten or more 40x and/or 50x errors in two
minutes or less.

• Lots of other bad guy activity…

OSSEC is not necessarily BSD specific, but since
OpenBSD’s primary focus is security, then what can be
more OpenBSD than even more security?

Of course, all that ten times in two minutes or less
is customizable as well. The installation is pretty
straightforward. Download the tarball. Extract it. Run the
included install.sh script. Now we have some tweaking to
do.

First, we need to edit /etc/pf.conf so that OSSEC can
block bad IP addresses. Add the following just under set
skip on lo in your /etc/pf.conf file:

table <ossec_fwtable> persist #ossec_fwtable

block in quick from <ossec_fwtable> to any

block out quick from any to <ossec_fwtable>

Wordpress Users
OpenBSD’s PHP package comes with something called
Suhosin to harden PHP. One of the things that Suhosin
prevents is any PHP script from changing the maximum
memory setting. A file in WordPress does this. We need to
prevent WordPress from doing this, or else OSSEC will block
OUR IP address when we log into WordPress administration.
Edit /var/www/htdocs/wordpress/wp-admin/admin.php.

In my version of WordPress the line number is 109. Yours
may vary. The line that we need to comment out is this:

@ini_set(‘memory_limit’, apply_filters(‘admin_memory_

limit’, WP_MAX_MEMORY_LIMIT));

Now, let’s modify the config files to look at Nginx and
MySQL logs. By default, this file isn’t writable, even by
root. So we have to change that.

chmod 640 /var/ossec/etc/ossec.conf

OSSEC on OpenBSD
(ONMP) 4.9
It is worth saying up front that these instructions assume
that you’re running Nginx compiled from source vice
Apache or Nginx from Ports or Packages.

What you will learn…
• How to harden your server with a Host Intrusion Prevention System

What you should know…
• Command Line BSD
• An ability to understand basic attacks... like why http://

yourserver.com/../../etc/master.passwd is a malicious request.
• A desire for a daemon to prevent malicious activity

http://www.ossec.net/
http://www.hardened-php.net/suhosin/

OSSEC on OpenBSD (ONMP) 4.9

Now we can edit /var/ossec/etc/ossec.conf. Add the
following lines just above the last line of the file:

 <localfile>

 <log_format>syslog</log_format>\

 <location>/var/mysql/toby.org.org.err</location>

 </localfile>

 <localfile>

 <log_format>syslog</log_format>

 <location>/usr/local/nginx/logs/access.log</location>

 </localfile>

 <localfile>

 <log_format>syslog</log_format>

 <location>/usr/local/nginx/logs/error.log</location>\

 </localfile>

Be sure to put the permissions back the way they were:

chmod 440 /var/ossec/etc/ossec.conf

We can restart OSSEC with:

/var/ossec/bin/ossec-control restart

Lastly, reload your pf.conf file:

pfctl -f /etc/pf.conf

Now drop from the SSH session on your server so that
you’re back on your laptop. The following command
issued from a host that is not your server should lock you
out for ten minutes. This assumes that:

• You hadn’t chosen to whitelist yourself when running
install.sh.

• You enabled Active Response.
• You have nmap installed.
• You should also get an e-mail if you enabled

notifications.

$ nmap -T4 -A -v -PE -PS22,25,80 -PA21,23,80,3389 <your server>

Or, if we really have to:

C:\> nmap -T4 -A -v -PE -PS22,25,80 -PA21,23,80,3389 <your server>

a d v e r t i s e m e n t

TOBY RICHARDS
Toby Richards has been a network administrator since 1997. He
considers himself to be a jack of all operating systems, but a true
master of none. He feels this to be a mastery in its own right since
he understands principles that are common to all operating
systems. His articles are the product of teaching himself to
become better with OpenBSD and PC-BSD. He simply writes
about what he has learned most recently. For a hosting provider,
he highly recommends bsdvm.com. They give you access to your
VMware console so that you can re-install your OS at will, and
with the settings of your own choosing.

http://rootbsd.net

10/2011 26

TIPS AND TRICKS Taking a Peek Under the Hood Without Compromising Security

www.bsdmag.org 27

LibGTop (LibGTop manual: http://developer.gnome.org/
libgtop/stable/) is a library used to obtain various
system statistics such as CPU and memory usage.

This article is a a brief introduction to the workings and
usage of libgtop, as well a description of OpenBSD’s
libgtop port and some of the challenges involved.

What is LibGTop?
LibGTop is one of the older libraries supporting the
GNOME platform. It was initially imported into the
GNOME source repository as early as May 1998. To
put this into perspective, libgnome was imported in
November 1997. Back then LibGTop already supported
several platforms: GNU/Linux, DEC OSF/1 and SunOS4.
So for a change it was designed with non-Linux systems
in mind. This greatly improved portability and as such
it currently has backends for ten different operating
systems. The FreeBSD backend was one of the first
new backends to be added in August 1998, and it was
the base for the generic BSD backend that was added
in 2007. By this time the FreeBSD backend was infested
with ifdef blocks for many of the other BSD’s, including
OpenBSD.

Thus this generic BSD backend has been used by
NetBSD, BSDi and OpenBSD, and only recently a
separate OpenBSD backend was created, as described
later in this article.

OpenBSD has had a porti (LibGTop port: http://
openports.se/devel/libgtop2) of LibGTop since OpenBSD
3.0 and as such packages are available for all supported
architectures. This poses various challenges, but it also
ensures correctness and an even greater degree of
portability.

A great advantage of LibGTop is that application
developers need not know on which platform the code
is going to be used. This allows them to not worry about
SunOS or Linux or BSD specifics and focus on what
matters instead. LibGTop abstracts the platform specifics
away and only exposes the developer to a well defined
and stable API.

What uses it?
As part of the GNOME platform there are various
applications using LibGTop. The most well known
would be gnome-system-monitor and gnome-nettool.
The applications use LibGTop extensively to retrieve
CPU, memory, disk and filesystem usage. As well as the
network interfaces, MAC addresses, network load and
IP addresses. Apart from the obvious users, there are
many more applications using it in less obvious ways.
For example baobab from the gnome-utils package used
LibGTop to retrieve disk and filesystem statistics.

Also non-GNOME projects such as gDesklets
(gDesklets homepage: http://gdesklets.de/) use LibGTop.

Taking a Peek Under
the Hood
Without Compromising Security

LibGTop allows developers to peek under the hood of the
kernel and export lots of system data in a convenient and
easy to use library.

What you will learn…
• Some LibGTop internals
• How to write simple applications (and scripts) with the library
• What went into getting LibGTop in shape on OpenBSD

What you should know…
• Basic programming knowledge
• The world is not Linux/i386

http://developer.gnome.org/libgtop/stable/
http://developer.gnome.org/libgtop/stable/
http://openports.se/devel/libgtop2
http://openports.se/devel/libgtop2
http://gdesklets.de/

10/2011 26

TIPS AND TRICKS Taking a Peek Under the Hood Without Compromising Security

www.bsdmag.org 27

LibGTop on Linux that backend has to read the correct
file in /proc, parse it, get the needed lines from it, then
do some more string parsing before having the needed
value. Needless to say this is slow and error prone, and
I’ll leave it as an exercise to the reader to compare the
Linux and BSD backends on the level of using sysctl(3)
versus /proc.

sysconf(3) is another platform independent way to
retrieve system variables, though it is only sparsely used
by the AIX and Solaris backends. The OpenBSD backend
only uses it to get the page size, as POSIX.1 says one
should not use getpagesize() for this anymore.

As mentioned before, different platforms need different
ways of accessing the information available in the kernel.
In the general case this requires the program to be setgid
kmem in order to read information such as CPU and
memory information from /dev/kmem. Since making all the
applications using LibGTop or LibGTop itself setgid kmem
is a ridiculously insecure idea, a different approach was
used. On platforms that require this, a special LibGTop
server is being used. This program contains the system
dependent code that needs special privileges and in case
of BSD, it’s installed setgid kmem.

The collected data gets stored in C structures, like
glibtop_swap for example. The library’s header files declares
this structure along with its members. Such as total,
used, free, pagein and pageout in case of glibtop_swap. All
of the structures that contain system data, also have a
special flags member. This is used as a bitmask which

And of course there are many scripts out there that use
the old Python bindings provided by gnome-python-
desktop. Recently it’s also become possible to use the
GObject Introspection data, I’ll elaborate on that later in
this article.

Thanks to the modular design in both the backend and
frontend, applications can use LibGTop without knowing
about the underlying operating system or architecture.

How does it work?
LibGTop’s goal is to take information exported by the
kernel to userland, on a host of different platforms and
present them to the caller in a uniform and standard
way. Regardless of the environment and of whether the
backend for this operating system supports the feature
the caller requested.

I must say that the developers of LibGTop solved this
problem in a rather elegant and clean way. This allowed
the library to be successfully ported to (and used on) ten
different operating systems, and at least an equal number
of different hardware architectures.

Various backends use different ways of retrieving
the information from the kernel. For example the Linux
backend uses the /proc filesystem intensively, even
though accessing this filesystem is inefficient and
slow.

The BSD backends mostly use sysctl(3) and kvm(3) to
retrieve the needed information from the kernel. There
are some places where specialized mechanisms are
used. For example swapctl(2) gets used swap information,
and struct vnnode, struct vmspace and struct vm_map_entry are
used to retrieve detailed information about a process in
procmap.c in the OpenBSD backend.

As most of you are probably aware, sysctl(3) is a
commonly used interface to retrieve (and set) system
information on BSD systems. For almost every call to

Listing 1. Using bitmasks the backends make their features
known

static const unsigned long _glibtop_sysdeps_mem =

(1L << GLIBTOP_MEM_TOTAL) + (1L << GLIBTOP_MEM_USED) +

(1L << GLIBTOP_MEM_FREE) +

(1L << GLIBTOP_MEM_SHARED) +

(1L << GLIBTOP_MEM_BUFFER) +

#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)

(1L << GLIBTOP_MEM_CACHED) +

#endif

(1L << GLIBTOP_MEM_USER) + (1L << GLIBTOP_MEM_LOCKED);

Listing 2. Retrieving total amount of memory with LibGTop

1 #include <unistd.h>

2 #include <glib.h>

3 #include <glibtop.h>

4 #include <glibtop/mem.h>

5

6 int main(int argc, char **argv)

7 {

8 glibtop_mem mem;

9 glibtop_init();

10 glibtop_get_mem(&mem);

11 printf("total mem (in kilobytes) = %llu\n",

12 mem.total/1024);

13 glibtop_close();

14 return 0;

15 }

10/2011 28

TIPS AND TRICKS

is the way LibGTop tells callers about which fields of the
structure contain correct data. In other words, using bitwise
operations the backends can conditionally implement
parts of the LibGTop API, called features. For example the
generic BSD backend code contains the following piece of
code: see Listing 1.

Thus mem.cached will only be made visible to the caller
on FreeBSD, as it doesn’t contain information on NetBSD
(OpenBSD implemented mem.cached later in it’s own
backend). This mechanism is simple, yet quite effective.

How to use it?
Everyone knows how to use a library; learn the API, call
the API in the code and link with the library and thus
using LibGTop is no different. As explained earlier, its
architecture is different from many libraries since it’s
using a server which actually retrieves data exported by
the kernel and passes it to our process.

Here follows a trivial example in C to demonstrate
retrieving the total memory currently available in the
machine (and visible to the kernel): see Listing 2.

This program can be compiled with the following
command (adding xau to the pkg-config command may or
may not be necessary, depending on your platform):

cc -O2 -pipe `pkg-config --cflags --libs libgtop-2.0 xau` \

 mem.c -o mem

And when run gives the following output:

total mem (in kilobytes) = 4067716

As with every other C program, first the headers need
to be included, which is done on lines 1 to 4. On line
8 we declare the variable mem which will to contain the
structure which will have the memory information for
us. On line 9 we set up our connection to the privileged
server, as well as obtain the features supported by this
platform. Next we finally retrieve and store the memory
statistics into the previously declared mem structure.
This particular structure can have at most nine
members depending on the current platform backend.
Right now we’re only interested in the total, which is
then printed in kilobytes before closing our connection
with the server.

This example works regardless of the operating system
and architecture it’s run on as all the backends of LibGTop
implement glibtop_mem.total. Of course if you were to
print one of the other members, say glibtop_mem.buffer,
the results may differ between platforms due to the way
memory is handled in their kernels.

Listing 3. Mini ifcon�g-like example

1 #include <sys/types.h>

2 #include <sys/socket.h>

3 #include <netinet/in.h>

4 #include <arpa/inet.h>

5 #include <glibtop.h>

6 #include <glibtop/netload.h>

7

8 int main (int argc, char *argv[]) {

9 glibtop_netload netload;

10 struct in_addr addr, subnet;

11 char *address_string, *subnet_string;

12 char address6_string[INET6_ADDRSTRLEN,

13 prefix6_string[INET6_ADDRSTRLEN];

14

15 glibtop_init();

16 glibtop_get_netload(&netload, argv[1]);

17

18 addr.s_addr = netload.address;

19 subnet.s_addr = netload.subnet;

20

22 subnet_string = g_strdup(inet_ntoa(subnet));

23

24 inet_ntop(AF_INET6, netload.address6, address6_

string,

25 INET6_ADDRSTRLEN);

26 inet_ntop(AF_INET6, netload.prefix6, prefix6_

string,

27 INET6_ADDRSTRLEN);

28

29 printf("%s: flags=0x%llx mtu %d\n"

30 "\tinet6 %s%%%s scopeid %#03x\n"

31 "\tinet %s subnet %s\n"

32 "\tbytes in: %llu out: %llu\n",

33 argv[1], netload.if_flags, netload.mtu,

34 address6_string, argv[1], (int)

netload.scope6,

35 address_string, subnet_string,

36 netload.packets_in, netload.bytes_out);

37 g_free(address_string);

38 g_free(subnet_string);

39 glibtop_close();

40 exit(0);

41 }

Taking a Peek Under the Hood Without Compromising Security

www.bsdmag.org 29

standard package provided by gobject-introspection along
with pygobject library. Together these provide the packages
to create and parse the GIR format as well as the bindings
for GLib, GObject etc. These interfaces are available for
many other languages, e.g. for JavaScript there is seed
and for Ruby there is ruby-gir-ffi.

To give an example of Python using GObject Intro-
spection, analogous to the first C example the following
script can be used: see Listing 4.

This example needs no further explanation as its
behavior is identical to the C program demonstrated
earlier.

I think that one of the great advantages of GObject
Introspection is that one doesn’t need to learn another
API to achieve something with a library one is already
familiar with.

Port to OpenBSD
Port’s history
The original LibGTop port was imported back in 2001 and
first shipped with OpenBSD 3.0 as part of the GNOME
1.x port for OpenBSD. At this time the port was actually
using the FreeBSD backend which had many OpenBSD
(and NetBSD and BSDi, etc) ifdef blocks and as such
the source was very hard to read and understand. It
made the Emacs source code look pretty!

In 2003 a port of LibGTop 2.x was imported as part
of the GNOME 2 platform which was still using the
FreeBSD backend. OpenBSD kept using this backend
until 2008 when LibGTop was released with a generic
BSD backend. It wasn’t until May 2011 that OpenBSD
finally got its own backend implementation, but more on
this shortly.

Before 2008 the port was basically only there to satisfy
the dependency chain of other GNOME ports. Although
one could use it to retrieve basic information, LibGTop
turned out to be very unstable. Applications such as
gnome-system-monitor would not work reliably for more
than a minute before crashing due to LibGTop blowing
up. The system information applets for the GNOME panel
wouldn’t work correctly, gnome-nettool was unusable.
Ergo, things needed to change and LibGTop needed to
get fixed.

The original LibGTop port for GNOME 1.x had in the
meantime been removed (in 2007). Nobody bothered to
fix the new version, so why keep the old one around if it’s
only going to be rotting away? No offense to the people
who worked on the original port, but it was only marginally
working.

So back in 2008 an update to 2.20.x was committed by
Antoine Jacoutot with a clear commit message:

A more elaborate example is the following which will
print the IPv4/IPv6 address and some more information
from the specified interface: see Listing 3.

Again compile it with:

cc -O2 -pipe `pkg-config --cflags --libs libgtop-2.0 xau` \

 net.c -o net

Running the code on my system as ./net re0 gives:

re0: flags=0x10846 mtu 1500

 inet6 fe80:1::e2cb:4eff:fe53:bfbb%re0 scopeid 0x1

 inet 192.168.178.89 subnet 255.255.255.0

 bytes in: 66744 out: 8017659

I won’t hold your hand and walk you through this
example, instead I would like to invite you to explore the
API yourself, perhaps using the previous code as an
example.

GObject Introspection
As of LibGTop version 2.28.3 GObject Introspection (GI;
GObject Introspection homepage: http://live.gnome.org/
GObjectIntrospection) support was added.

This allows programmers to use LibGTop from any
language, using only the C library and the introspection
data. This makes it possible to write scripts in JavaScript
with Seed to gather some quick statistics, as well as
writing full blown monitoring applications with Python or
Java.

GObject Introspection is like the universal bindings
to a library, provided there is a bridge between the
introspection GIR and typelib data, and the targeted
programming/scripting language. For Python this is the

Listing 4. The code in listing 1 ported to Python and GObject
Introspection

1 import gi

2 from gi.repository import GTop

3

4 mem = GTop.glibtop_mem()

5 GTop.glibtop_get_mem(mem)

6 print('total mem (in kilobytes) = %s' %

str(mem.total/1024))

7 Gtop.glibtop_close()

GObject Introspection homepage: http://live.gnome.org/GObjectIntrospection
GObject Introspection homepage: http://live.gnome.org/GObjectIntrospection

10/2011 30

TIPS AND TRICKS

www.bsdmag.org

Note that it does not work better than the previous

in-tree version but it will give us a better base to fix it.

And fixing it we did, at least for a short while... one fix
and a year and a half later I committed an update to
2.28.x:

it’s not any less broken than the previous version, but

at least it gives us a recent base to hack on.

Sometime in the beginning of 2010 Antoine started
working on a port of gnome-nettool and needless to say,
he had to start fixing LibGTop (again). He committed
about a dozen fixes and thanks to his work LibGTop
became much more stable and robust. At least good
enough to import gnome-nettool and a week later we
imported gnome-system-monitor too. Though it was still
rather unstable and wasn’t displaying all the correct data,
but it was a start.

Standalone OpenBSD backend
In May 2011 I decided to pickup work on LibGTop again
and to finish it this time. At this point the generic BSD
backend had become one horrendous piece of code that
was tied together with lovely ifdef blocks like:

#if (defined(__NetBSD__) && (__NetBSD_Version__ >=

104000000)) || (defined(OpenBSD) && (OpenBSD >= 199912))

And that’s only a harmless, non-nested block! I
decided to take measures and fork the BSD backend
into a separate OpenBSD implementation free of ifdef
blocks and a proper base to use to fix the remaining
issues. Having a standalone backend also made it
much easier to submit, and eventually commit, patches
upstream as it wouldn’t interfere with any of the other
backends. Over the course of the next few weeks many
bugs were squashed and issues fixed. Varying from
implementing small IPv6 tweaks to fixing crashers and
correctly retrieving CPU/memory/swap/disk/network
data.

Challenges
Even though the current port works great (or at least close
to it..), it was far from an easy ride. Some of the biggest
challenges we ran into when doing this port were (in
random order):

• Type juggling: As LibGTop needs to run on various
architectures with many different type widths this
posed a small challenge. Of course this is no different

from any other program, yet it did bite us. Some
machines (like amd64) had millions of megabytes of
RAM, while 32-bit machines had negative amounts
of RAM, which was rather odd to see. Though we
quickly diagnosed and fixed it.

• Changing API: The LibGTop API has been very
stable. In fact, it hasn’t changed at all since 2008
when a new function was added. The challenge
here was to keep up with changes in OpenBSD.
While most things are just using the simple sysctl(3)
interface, there are pieces of code, like that in
procmap.c that actually needed a UVM-hacker in order
to fix the code when OpenBSD switched to vmmap
(ariane@’s commit: http://marc.info/?l=openbsd-c
vs&m=130625098223964&w=3). Sadly the kernel
patch was backed out shortly thereafter due to
loss of memory address randomization, but it will
probably be committed again in time for OpenBSD
5.1.

• Unreadable source: As I just described in the
previous section, at one point the generic BSD
backend sources became completely unreadable and
very hard to maintain and extend. Most of the code
there was wrapped in various levels of ifdef blocks
so maintenance became too hard and it was thus
decided to split away from the generic BSD backend.
I think this was one of the best decisions we made for
this port.

Current status
I think we can say, with certain pride, that the LibGTop port
has matured well. There are still some issues we need
to address but generally it works very well on OpenBSD.
One of the issues that exist as of writing this article is that
we still depend on calling the external lsof(8) to get a list
of open files; this needs to be migrated to kvm(3). Also,
we’ll need to do some extensive cross-architecture testing
to ensure there are no more type-casting bugs in the code
and we that get correct results on all the architectures
OpenBSD supports.

Conclusion
In this article I have tried to give an overview of
GNOME’s LibGTop project in which I’ve been actively
involved on both sides; being an OpenBSD developer
working on the port, as well as having committed to
the LibGTop repository. As such I’ve given a brief
overview of how LibGTop works and a description of
the OpenBSD port.

In my opinion LibGTop is a good example of a portable
project that works well in the modern desktop environment.

http://marc.info/?l=openbsd-cvs&m=130625098223964&w=3
http://marc.info/?l=openbsd-cvs&m=130625098223964&w=3

10/2011 30

TIPS AND TRICKS

www.bsdmag.org

JASPER LIEVISSE ADRIAANSE
Jasper Lievisse Adriaanse has been an OpenBSD developer since
2006 and a GNOME committer since June 2011. Since getting his
account he has been committing minor and major contributions
to basically all areas of OpenBSD, as well as portability �xes to
various GNOME projects. When he’s not working on OpenBSD
(either professionally or as a hobby) he has a keen interest in
embedded system design/programming as well as traveling and
hiking.

In the past few years there have been various lowlevel
projects that claim to be portable and lightweight. Although
in reality they tend to have either one big dependency (the
Linux kernel) or they require massively intrusive changes
to the targeted operating system kernel. Prime examples
are systemd, HAL and gudev, respectively.

LibGTop solved this by having operating system
independent backends which implement LibGTop’s
features using the operating systems’ own interfaces.

Over the past two years the OpenBSD port of LibGTop
has seen some major improvements. From a library that
was basically only there to complete the dependency
chain and wasn’t doing much good; to a fully functional
library that is well supported upstream too. Of course
there is always room for improvement, but we’re getting
there and OpenBSD’s upcoming 5.0 release will finally
have a stable LibGTop!

I would like to thank the gnome@FreeBSD.org team,
and Joe Marcus Clarke (marcus@FreeBSD.org) in
particular, for their continued efforts to improve GNOME
(and thus LibGTop too) on FreeBSD. Various bits of
code and patches have been merged from the FreeBSD
LibGTop port into the OpenBSD port.

Finally I would like to thank my fellow GNOME-maintainer
in OpenBSD, Antoine Jacoutot (ajacoutot@OpenBSD.org)
with whom I’ve shared several years of tough challenges,
but most of all laughter and joy as a direct result from
working on GNOME and OpenBSD.

mailto:gnome@FreeBSD.org
mailto:marcus@FreeBSD.org
mailto:ajacoutot@OpenBSD.org
http://bsdmag.org

10/2011 32

SECURITY Protecting Apache From Dos And Ddos Attacks

www.bsdmag.org 33

In this tutorial i am introducing you an apache module
that will help you protect your webserver from dos or
ddos attacks.

The module i am going to use in this tutorial is called
mod_evasive. Is a module as i said above for Apache, and
its purpose is to provide evasive action in the event of
an HTTP DoS or DDoS attack or brute force attack. It is
also designed to be a detection tool, and can be easily
configured to talk to ipchains, firewalls, routers, and
etc.

Detection is performed by creating an internal dynamic
hash table of IP Addresses and URIs, and denying any
single IP address from any of the following:

• Requesting the same page more than a few times per
second

• Making more than 50 concurrent requests on the
same child per second

• Making any requests while temporarily blacklisted (on
a blocking list)

This method has worked well in both single-server
script attacks as well as distributed attacks, but just
like other evasive tools, is only as useful to the point of
bandwidth and processor consumption (e.g. the amount
of bandwidth and processor required to receive/process/
respond to invalid requests), which is why it’s a good
idea to integrate this with your firewalls and routers.

Installing

#cd /usr/ports/www/mod_evasive

#make install clean

#vi /usr/local/etc/apache22/httpd.conf

Protecting Apache
DOS(Denial of Service) or DDOS(Distributed Denial of
Service), it is an attack where multiple compromised
systems (which are usually infected with a Trojan) are used
to target a single system in attempt to make the system
resources(cpu,memory,network) unavailable to its intended
users and causing system to crash.

From Dos And Ddos Attacks

What you will learn…
• What is dos and ddos attack
• Installing and con�gure mod_evasive for apache2.2.x in order to

protect your webserver from dos-ddos attacks

What you should know…
• Using vi or nano or pico or any text editor

Figure 2. Apache httpd.conf mod_evasive enable moduleFigure 1. Finishing apache mod_evasive installation

10/2011 32

SECURITY Protecting Apache From Dos And Ddos Attacks

www.bsdmag.org 33

Make it writetable so mod_evasive can write inside this
folder

#chmod -R 777 /var/log/httpd-modevasive

restart apache to activate the module

/usr/local/etc/rc.d/apache22 restart

Note
You can modify the config of mod_evasive according to your
needs.

Now to test it if is working create this small script

#touch /root/evasive_test.pl

#chmod 755 /root/evasive_test.pl

#vi /root/evasive_test.pl

Copy and paste the above text to the file

#!/usr/bin/perl

test.pl: small script to test mod_dosevasive’s effectiveness

use IO::Socket;

use strict;

for(0..100) {

 my($response);

 my($SOCKET) = new IO::Socket::INET(Proto =>

„tcp”,PeerAddr=> „127.0.0.1:80”);

 if (! defined $SOCKET) { die $!; }

 print $SOCKET „GET / HTTP/1.0\n\n”;

 $response = <$SOCKET>;

 print $response;

 close($SOCKET);

}

Save it and close the file. Now run the script

Find line

#LoadModule evasive20_module libexec/apache22/mod_

evasive20.so(figure 2)

And change it to

LoadModule evasive20_module libexec/apache22/

mod_evasive20.so

Save the file and exit vi (using command :wq). Create
mod_evasive config file

touch /usr/local/etc/apache22/Includes/mod_evasive20.conf

#cat > /usr/local/etc/apache22/Includes/mod_evasive20.conf << EOF

<IfModule mod_evasive20.c>

DOSHashTableSize 3097

DOSPageCount 20

DOSSiteCount 100

DOSPageInterval 2

DOSSiteInterval 2

DOSBlockingPeriod 100

DOSWhitelist 127.0.0.1

DOSWhitelist 192.168.0.*

DOSLogDir „/var/log/httpd-modevasive”

DOSEmailNotify yourmail@domain.com

</IfModule>

EOF

Create mod_evasive log dir

#mkdir /var/log/httpd-modevasive

Figure 3. Testing mod_evasive Figure 4. Apache log showing dos attack

10/2011 34

SECURITY

#perl /root/evasive_test.pl

And if you will see figure 3 that means is running
perfectly and blocking dos or ddos attacks. You will also
get mail if you running mail server on the pc with the
attacker ip. Now run

#tail –f /var/log/httpd-access.log

Now in apache httpd-access.log you will see Figure 4 and
in folder /var/log/httpd-modevasive

#ls –al /var/log/httpd-modevasive

you can see the blocked ips.
Now lets tune a little bit our system for ddos attacks.

Edit /etc/sysctl.conf using vi or any editor and add the
values

net.inet.tcp.msl=7500

net.inet.tcp.blackhole=2

net.inet.udp.blackhole=1

net.inet.icmp.icmplim=50

kern.ipc.somaxconn=32768

net.inet.tcp.msl defines the Maximum Segment Life.
This is the maximum amount of time to wait for an ACK
in reply to a SYN-ACK or FIN-ACK, in milliseconds.
If the computer does not receive an ACK in this time,
it considers the segment lost and frees the network
connection.

This has two implications. When you are trying to close
a connection, if the final ACK is lost or delayed, the socket
will close more quickly. However, if a client is trying to
open a connection to you and their ACK is delayed more
than 7,500 ms, the connection will not form. RFC 753
defines the MSL as 120 seconds (120,000 ms). However,
this was written in 1979; timing issues have changed
slightly since then. Today, FreeBSD’s default is 30,000
ms. This is sufficient for most conditions, but for stronger
DoS protection you can lower this to 7,500 or less.

net.inet.tcp.blackhole defines what happens when the
system receives a TCP packet on a closed port. When
set to 1, SYN packets arriving on a closed port will be
dropped without a RST packet being sent back. When
set to 2, all packets arriving on a closed port are dropped
without an RST being sent back. This saves CPU time,
because packets don’t need as much processing, and
outbound bandwidth, by not sending out packets.

net.inet.udp.blackhole resembles net.inet.tcp.blackhole
in its function. As the UDP protocol does not have states

like TCP, there is only one choice when it comes to
dropping UDP packets. When net.inet.udp.blackhole is
1, the system will drop all UDP packets that arrive on a
closed port.

The name net.inet.icmp.icmplim is somewhat
misleading. This controls the maximum number of ICMP
Unreachables and also TCP RST packets to return every
second. It helps curb the effects of attacks that generate
a lot of reply packets.

kern.ipc.somaxconn limits the maximum number of
concurrently open sockets. The default here is just 128. If
an attacker can flood you with a sufficiently high number of
SYN packets in a short enough period of time, he can use
up all of your possible network connections, successfully
denying your users access to the service.

You may find these settings to be either too aggressive
or not aggressive enough. Tune them until you receive
satisfactory results.

Now your server if a little more secure against dos and
ddos attacks.

STAVROS N. SHAELES
Stavros N. Shaeles is a member of the IEEE and the IEEE
Computer Society. He received his diploma in Electrical and
Computer Engineering in Democritus University of Thrace in
2007. He is working with unix system for 8 years. Currently he is
a phd student in research area of data mining with applications
to computer security in *nix Systems, under the supervise
of Associate Professor Alexandros S. Karakos, and also he is
administrator of LPDP Lab in Democritus University of Thrace
in Greece (DUTH). This article is dedicated to Stavroula Memouri
(my girlfriend) for her patient and understanding to my work.

http://bsdmag.org

10/2011 36

IPV6 The Inevitability of IPv6, Part 1

www.bsdmag.org 37

IPv6 is the set of protocols that will replace today’s
IPv4. IPv6 offers many benefits necessary to support
the Internet’s continuing expansion – most notably

an expanded address space that overcomes pressures
in regions such as Africa, Asia, China, and the Middle
East. Temporary solutions such as Network Address
Translation (NAT) – although effective in the short term
– won’t provide long-term help. Recognizing that IPv6
is the future, many governments are mandating that
their systems and networks support IPv6, including
the US government. If your company does business
with entities that use (or plan to use) IPv6, you’ll
feel the pressure to support IPv6, if only to support
communications between your company and your
partners. Simply put, IPv6 might become a competitive
advantage.

In this first part of a three-part series, I describe IPv6
addressing in detail, focusing on how its addressing
scheme works. I also describe some of the new features
of IPv6, as well as some of the reasons you should care
about it – even if you don’t plan on implementing it in
the near future. In two future articles, I’ll describe how
to configure interfaces with addresses and enable DNS
resolution. I’ll also describe in detail how to configure
your systems and networks to use IPv6 and IPv4
together while you transition to an all-IPv6 network.
Finally, I’ll look into strategies for using IPv6 over the

IPv4 Internet if your ISP doesn’t support IPv6. But first,
we need to lay down a foundation.

BSD Support for IPv6
Almost every modern OS supports IPv6 out of the box,
and the BSD family of operating systems is no different.
IPv6 came to BSD through the KAME project, which
was a joint effort of six organizations in Japan with the
aim to provide a free IPv6 and IPSec (for both IPv4
and IPv6) protocol stack. If you are a history buff like
myself, you will want to Chapter 1 in IPv6 Core Protocols
Implementation by Qing Li, Tatuya Jinmei, and Keiichi
Shima.

Because of the significant internal differences between
IPv4 and IPv6, some of the lower level functionality
available to programmers in the IPv6 stack do not work
identically with IPv4 mapped addresses. Some common
IPv6 stacks do not support the IPv4-mapped address
feature, either because the IPv6 and IPv4 stacks are
separate implementations (e.g., Microsoft Windows
2000, XP, and Server 2003), or because of security
concerns (OpenBSD). On these operating systems,
it is necessary to open a separate socket for each IP
protocol that is to be supported. On some systems, e.g.,
the Linux kernel, NetBSD, and FreeBSD, this feature is
controlled by the socket option IPV6_V6ONLY as specified
in RFC 3493.

The Inevitability of
IPv6, Part 1
A switch from IPv4 to IPv6 is on your horizon. Are you ready
for it?

What you will learn…
• IPv6 terminology and features

What you should know…
• Basic TCP/IP knowledge

10/2011 36

IPV6 The Inevitability of IPv6, Part 1

www.bsdmag.org 37

Address (aka global address), or a LocalUse Unicast
Address.

Global address
A global address is unique to the interface it’s assigned
to and can be used to reach that interface from any other
interface. Global IPv6 addresses are hierarchical and
contain routing information. Figure 1 shows the format
of a global address. A unicast address’s first three bits
– called the Format Prefix (FP) – are always 001. FPs can
be of varying length (e.g., the multicast FP is eight bits
in length). The next thirteen bits comprise the TopLevel
Aggregation Identifier (TLA ID). This ID is allocated to top-
level ISPs, of which there can be 8,192.

Next in the address is a reserved field – eight bits in
length and designed for future expansion of the TLA ID.
The next field in the address, the Next-Level Aggregation
Identifier (NLA ID), is 24 bits in length and is used by the
top-level ISP to organize networks or to support second-
tier ISPs, each of which would have one or more NLA IDs
assigned to them.

These combined 48 bits uniquely identify a site
belonging to the top-level or second-tier ISP’s customer.
Sites are determined by geography. For example, an
international company might have many sites. Each
site’s IPv6 connection will have a 48-bit address unique
to the site. Each site can use the next sixteen bits in the
address – called the Site-Level Aggregation Identifier

IPv6 Addressing
IPv6 gives you a whole new means of uniquely addressing
a node (or end system). In IPv6, there are 128 bits
available to uniquely identify a node. IPv4 offers 32 bits,
for a total of more than 4 billion possible combinations,
but far fewer are practically available because of the way
address space has been organized. With 128 bits, we’ll
have sufficient addresses for the next millennium – even
given the way addresses are allocated.

Before I discuss the allocation and use of IPv6
addresses, it’s helpful to understand the format that’s
used to represent them. Whereas IPv4 uses a dotted-
decimal system (e.g., 192.168.16.10), IPv6 uses a
different format. An IPv6 address is split into eight 16-bit
blocks: Each block is represented by four hexadecimal
digits, and each block is separated by a colon (:) – for
example, 2001:0000:0000:e388:0092: fb7f:a827:fad6. Within
each block, leading zeroes can be omitted so that the
address can be read as 2001:0:0:e388:92: fb7f:a827:

fad6. Also, blocks of zeroes can be omitted, so that the
address can be further simplified as 2001::e388:92:fb7f:
a827:fad6. Note the use of the double colon to represent
the blocks of zeroes. If you have more than one block
of consecutive zeroes in an address, only one block
can be omitted. (Otherwise, it would be impossible to
reconstruct the original address.)

Currently, three types of IPv6 addresses can be
allocated to a node: unicast, multicast, and anycast. A
unicast address uniquely identifies a single interface (or
network connection) on a node (or a virtual interface on
clustered systems). A multicast address is similar to an
IPv4 multicast address and can be shared by several
interfaces on several nodes. A packet with a multicast
destination address is delivered to all interfaces on all
nodes that share the address. However, a packet with
an anycast destination address is delivered to only one
interface: the nearest interface to the sending interface.
Regardless of type, the address identifies an interface
on a node – not the node itself. A node will likely
have multiple IPv6 addresses, even if it has only one
interface.

Unicast Addresses
Each interface can have more than one unicast address.
A unicast address can be an Aggregatable Global Unicast

Figure 2. IPv6 Address Scope

����

����

����

����

Figure 1. Global Unicast Addressing

��� ������
������

���
�����

������
������

������
������

������������
������

10/2011 38

IPV6

address when no other address is available (e.g.,
when requesting an IP address from an IPv6-capable
DHCP server). The second address is the loopback
address and is always 0:0:0:0:0:0:0:1, or simply ::1.
This address – equivalent to the IPv4 loopback address
127.0.0.1 – can be used for local testing of applications
and configuration. Every interface will respond to the
loopback address.

The Interface ID
The Interface ID in a unicast address is always 64 bits in
length. It was designed this way to support 48-bit MAC
addresses of current 802.x LAN technologies such as
Ethernet, and wireless technologies such as Bluetooth
and Wi-Fi, as well as the 64-bit addresses that FireWire
uses. Future 802.x series LAN and wireless technologies
will also use 64-bit addressing. The requirement to
support 48-bit and 64-bit MAC addresses comes from
the requirement that the Interface ID in a unicast address
can be derived from a MAC address using an Extended
Unique Identifier (EUI) 64 address. The Interface ID can
also be assigned manually or by an IPv6-capable DHCP
server.

In the most common scenario, the Interface ID is
derived from the 48-bit MAC address of an Ethernet
card. A 48-bit MAC address is split into two 24-bit halves.
The IEEE assigns the first 24 bits to manufacturers. The
manufacturer uses the second 24 bits to uniquely identify
the card. Although it’s possible to override the MAC
address of an Ethernet card, let’s assume that it hasn’t
been overridden. To convert a 48bit MAC address to a
64-bit Interface ID, the system first copies 24 bits of the
MAC address to the first 24 bits of the Interface ID. Bits 17
and 16 of the first 24 bits representing the manufacturer
(reading from right to left, starting at 0) are always set to
00. During the copy, the system sets them to 10. After
the 24 bits are copied over, 16 bytes are added, and
they’re always 0xFFFE. The system then copies 24 bits in
the second half of the MAC address to produce the 64-bit
Interface ID.

In dial-up scenarios, the Interface ID can be generated
using a process designed to guarantee the anonymity
of the user. If not for this provision, a system could be
tracked as it used the Internet, regardless of the ISP used,
because the Interface ID would be unique to the computer
regardless of the ISP.

Multicast Addresses
IPv6 multicasting is similar to IPv4 multicasting. A node
that wants to listen for multicast traffic will set the IPv6
address of an interface to the multicast address that the

(SLA ID) – to divide the site into subnets. Each site can
have 65,535 subnets. Alternatively, if a company has
multiple sites but only one IPv6 connection via an ISP,
it can use the SLA ID to route between the sites and to
the connection. The last field in the global address is the
Interface ID, which is 64 bits in length. This field is similar
to IPv4’s host identifier, which uniquely identifies the host
on the network.

Local-Use Unicast Address
There are two types of Local-Use Unicast Addresses.
The first is called a link-local address, which is used to
communicate between interfaces belonging to nodes on
a single link. The second is called a site-local address,
which is used to communicate between interfaces
belonging to nodes in a site. Both are viable alternatives
to a global address, depending on the scope. Figure 2
shows the scope of a link and a site.

Link-local addressing is similar to IPv4’s Automatic
Private IP Addressing (APIPA)[1]. Link-local addresses
begin with an FP of FE80: – the last 64 bits of a link-local
address are the Interface ID, and the bits in between the
FP and the Interface ID are zeroed out. As with APIPA,
link-local addresses are automatically configured without
the need for a DHCP server or manual configuration. In
fact, every IPv6 capable interface automatically has a
link-local address configured for it. If you have any nodes
on your network that support interfaces with IPv6, they’ll
have a link-local address and might be sending packets
onto your network as part of Neighbor Discovery. Two
nodes on the same link with interfaces that support IPv6
will automatically be able to communicate with each
other, without any further configuration or management.
However, communication using link-local addresses is
restricted to a link – IPv6-aware routers should never
forward packets with link-local source or destination
addresses.

Site-local addresses are similar to the IPv4 private
addresses, which have the network identifiers 10.0.0.0/
8, 172.16.0.0/12, and 192.168.0.0/16. Site-local
addresses always begin with an FP of FEC0:. As with
link-local addresses, the last 64 bits of the address
comprise an Interface ID. The lower 16 bits of the top
64 bits – called the Subnet ID field – uniquely identify
subnets in the site, the same as the SLA ID field in a
global address. The bits between the FP and the Subnet
ID field are zeroed out.

IPv6 uses two special constant addresses. The first is
called the unspecified address and is always set to 0:
0:0:0:0:0:0:0, or just :: for short. This address – similar
to the IPv4 address 0.0.0.0 – functions as a source

The Inevitability of IPv6, Part 1

multicast address to an Ethernet multicast address. An
Ethernet multicast address takes the form 33:33:xx:xx:xx:

xx. Using the recommended multicast addressing format,
the bottom 32 bits of the Group ID create the Ethernet
multicast address.

IPv6 also uses multicast addresses to support link
address resolution. Every interface adds a multicast
address for each of its unicast addresses. The multicast
address takes the form FF02::1:FFxx:xxxx. The system
copies the last 24 bits of the unicast address to the
multicast address to replace the xx:xxxx. The system
then maps the IPv6 multicast address to the MAC
multicast address, as described above. This scheme
reduces the number of nodes that have to process
address-resolution requests. In IPv4, when one node
wants to obtain another node’s interface MAC address,
the system sends a broadcast message to the broadcast
MAC address. Therefore, every interface on the link is
forced to process the request – even if it’s not intended
for it. In IPv6, a node that wants to find another node’s

traffic is being sent to. Multicast addresses have an FP of
0xFF. The next four bits of the multicast address comprise
the Flags field.

The lowest bit in the Flags field is called the Transient
flag. If set to 0, the multicast address is a well-known
address set by IANA; if set to 1, it’s a non-permanent
or transient multicast address. The next four bits of
the multicast address comprise the Scope field. The
purpose of this field is to identify the scope of the
multicast traffic, and to identify the traffic as node-
local, link-local, site-local, organization-local, or global.
Routers use this field to determine whether to forward
traffic. The last field in the multicast address is the Group
ID, which is 112 bits in length. The Group ID identifies
the multicast group. As with unicast addresses, there
are predefined multicast addresses. Table 1 lists the
three most common ones.

When using multicasting in IPv6, you should use only
the bottom 32 bits of the Group ID field and zero out the
top 80 bits. Doing so eases conversion support of the

a d v e r t i s e m e n t

http://www.bsdday.eu/2011

10/2011 40

IPV6

interface MAC address will send a broadcast message
to the multicast address FF02::1:FF:xx:xxxx, where xx:xxxx
is the bottom 24 bits of the interface ID. This, in turn,
is translated into a MAC multicast address 33:33:FF:xx:
xx:xx. Only those interfaces on the link with matching
lower 24 bits in their Interface ID need to respond to the
address-resolution request.

IPv6 Features
There’s more to IPv6 than simply an expanded address
space. IPv6 includes a new header format, improved
support for extensions and options, flow-labeling
capabilities, and authentication and privacy capabilities.

New header format
IPv6’s new header format minimizes the overhead often
spent processing fields or information in packet headers.
In IPv4, routers and end systems are required to examine
packets in detail, looking for information necessary to
determine whether the packet should be processed further.
With IPv6, you’ll now find those fields (when required)
after the main packet header in Extension Headers. The
new header format makes header processing much more
efficient at routers, which can ignore information in any
Extension Headers – with the exception of a Hop-by-Hop
Extension Header, which must immediately follow the
IPv6 header. The Hop-by-Hop Extension Header might
contain information necessary for a router, such as a
warning that a packet is a Jumbo packet (greater than
65,535 bytes), or that a router must perform additional
processing on the packet.

Improved support for extensions and options
The change in the IPv6 packet header format and the
use of Extension Headers facilitate this new feature.
Options in Extension Headers have fewer limitations on
size than in IPv4, and IPv6 is extensible by adding more
defined Extension Headers over time.

In IPv6, if a destination node receives an IPv6
packet containing an Extension Header that it doesn’t
recognize, it informs the source node via Internet Control
Message Protocol version 6 (ICMPv6) that it can’t
process the packet. This feature lets nodes implement
IPv6 extensions independently of each other and still
communicate.

PAUL T. AMMANN
Paul lives in New Fair�eld, CT with his wife Eve and two cats.
He recently converted from Linux to OpenBSD although he still
misses his TI 99/4A and Timex Sinclair.

Flow-labeling capabilities
IPv6 uses flow labeling for Quality of Service (QoS). Flow
labeling lets a source node define a priority (e.g., real
time), which might be used in Voice over IP (VoIP) or
video-over-IP solutions to guarantee delivery of a packet
within a certain time window. In IPv4, QoS often requires
a router or node to look beyond a packet’s header for
information. In IPv6, all necessary information is in the
header.

Authentication and privacy
IPv6’s authentication and privacy capabilities are,
essentially, IPSec. IPSec is now a requirement in
IPv6 implementations, whereas in IPv4 it’s an optional
component. IPSec supports Authenticated Headers, which
authenticate nodes to each other and ensure the integrity
of data exchanged between them, and Encapsulating
Security Payload (ESP), which has similar functionality but
also includes the ability to encrypt data for confidentiality.

Unlike IPv4, in which different implementations of the
protocol by different vendors could – and would – result in
an inability of nodes to communicate with each other, in
IPv6 interoperability is almost guaranteed, thanks to the
underlying standards.

Stay Tuned
We’ve only just started. Now that you’ve got some solid
foundational knowledge about IPv6, you’re primed to dive
into the actual configuration and use of the protocol. Get
ready to make it work on FreeBSD and PC-BSD, and
prepare yourself for configuring interfaces with addresses
and enabling DNS resolution. In Part 2, I’ll talk about how
to enable IPv6 and IPv4 interoperability on your way to an
all-IPv6 network.

Footnotes
Both IPv4 and IPv6 have standard methods for address
autoconfiguration. For link-local addressing IPv4 uses the
special block 169.254.0.0/16 as described in RFC 3927
while IPv6 hosts use the prefix fe80::/10. Some books
and documentation refer to this as Zero Configuration
networking while Microsoft refers to this as Automatic
Private IP Addressing (APIPA). The APIPA name has
stuck ever since.

Table 1. Common Prede�ned Multicast Addresses

Multicast Address Use
FF01::1 Node-local scope for all nodes

FF02::1 Link-local scope for all nodes

FF05::1 Site-local scope for all nodes

http://www.exonetric.com

10/2011 42

IPV6 he Inevitability of IPv6, Part 2

www.bsdmag.org 43

As I maintained in The Inevitability of IPv6, Part 1,
even if you have no immediate plans to migrate to
IPv6 in your enterprise, you need to be ready for

it, and you need to understand how FreeBSD uses it. If
you communicate regularly with business partners over
the Internet, you might be forced to tackle IPv6 because
many companies are already beginning to make the
transition. Increasingly, governments – including the U.S.
government – are mandating its use.

In Part 1, I described how the BSD family of
operating systems are supporting IPv6, and I provided
an overview of how IPv6 addressing works. Be
sure you’re well-versed in that article’s foundational
information before taking the plunge into this article.
Now, without further ado, let’s investigate how to enable
and configure IPv6 in FreeBSD and how to use IPv6
to communicate – even if your routing infrastructure
doesn’t yet support it.

Enabling IPv6 in FreeBSD
As I explained in Part 1, the BSD family of operating
systems come with IPv6 installed and running. For this
article, I’ll be using FreeBSD 8.2 that has been updated
and patched using portsnap. Let’s get to it!

The FreeBSD kernel is already IPv6 enabled. You can
manually enable IPv6 by adding the following line to the
/etc/rc.conf configuration file:

ipv6_enable=“YES”

You can manually start the appropriate rc script (or
reboot the system) for the changes to take effect:

/etc/rc.d/network_ipv6 start

This will enable IPv6 on all interfaces that are IPv6
capable. This behavior is changed by modifying the
following variable in the /etc/rc.conf file:

ipv6_network_interfaces=“em0”

This will enable IPv6 support on specified interfaces.
The default value for this variable is auto.

Once you enable IPv6, interfaces will discover the IPv6
enabled routers on the network and build their own IPv6
addresses based on the network prefix they receive from
the router.

Configuring Interfaces
In a typical scenario, IPv6 network stack will automatically
look for an IPv6 enabled router on the same network for
each interface and try to automatically configure the IPv6
address on the interface.

The following is an example of an automatically
configured interface: Listing 1.

The Inevitability of
IPv6, Part 2
Configure IPv6 in your network – even if your routing
infrastructure doesn’t yet support it.

What you will learn…
• IPv6 terminology and features

What you should know…
• Basic TCP/IP knowledge

10/2011 42

IPV6 he Inevitability of IPv6, Part 2

www.bsdmag.org 43

The above example shows the discovered IPv6 hosts.
The em0 interface is connected to an IPv6 enabled
network and receives a valid prefix via a router (the first
entry of the list).

The second entry is the unicast address of the em0. The
third and fourth entries are link-local address for the router
and our host.

As you have seen so far, there are some special
(reserved) IPv6 addresses. The following table shows a
list of reserved addresses: Table 1.

In case you want to configure the static IPv6 address on
an interface, it can be done as in a typical IPv4 scenario:
Listing 3.

This will manually configure an IP address on the
specified interface. Note the prefixlen keyword that is
equivalent to subnet mask in IPv4.

Routing IPv6
Similar to IPv4, your host doesn’t automatically forward
IPv6 traffic between interfaces, by default. In order to
enable packet forwarding between the two IPv6 enabled
interfaces, you should modify the net.inet6.ip6.forwarding
sysctl variable:

sysctl net.inet6.ip6.forwarding=1

net.inet6.ip6.forwarding: 0 -> 1

Beside the IPv4 address, there are two IPv6 addresses
on the interface. One address begins with fe80:: and
identified with the scopeid 0x1 tag, which is called a link-
local address. ****

The unicast address prefix is obtained from the IPv6
router on the network. The whole address is created using
the 64 bits Extended Unique Identifier (EUI-64) algorithm,
which consists of the hosts MAC address with some minor
modifications.

The link-local address (that is from the reserved address
pool) always with fe80:: and is used for local network
usage. This can be compared with RFC 1819 private
addresses that are suitable for local use. The network
stack will automatically assign a link-local address to
each IPv6 enabled interface, regardless whether an IPv6
router is discovered on the network. This means that in a
scenario of a home network or a lab network, you don’t
need to run an IPv6 router or have a valid IPv6 prefix in
order to establish an IPv6 network. All the hosts will be
automatically provisioned with a link-local address, so they
can exchange IPv6 traffic.

The network discovery protocol (NDP) helps the host
find the router on the network and then create a unicast
address for the interface. NDP is known as the equivalent
to the ARP protocol in IPv6. The ndp(8) utility is used to
control the behavior of this protocol: Listing 2.

Listing 1. An example of an automatically con�gured interface

grumpy# ifconfig

em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

 options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM>

 ether 00:1c:42:10:c2:b2

 inet6 fe80::21c:42ff:fe10:c2b2%em0 prefixlen 64 scopeid 0x1

 inet6 ::21c:42ff:fe10:c2b2 prefixlen 64 autoconf

 inet 10.211.55.76 netmask 0xffffff00 broadcast 10.211.55.255

 nd6 options=3<PERFORMNUD,ACCEPT_RTADV>

 media: Ethernet autoselect (1000baseT <full-duplex>)

 status: active

Listing 2. The ndp(8) utility

$ ndp -a

Neighbor Linklayer Address Netif Expire S Flags

fe80::21c:42ff:fe00:18%em0 0:1c:42:0:0:18 em0 23h12m33s S R

::21c:42ff:fe10:c2b2 0:1c:42:10:c2:b2 em0 permanent R

fe80::21c:42ff:fe10:c2b2%em0 0:1c:42:10:c2:b2 em0 permanent R

10/2011 44

IPV6 he Inevitability of IPv6, Part 2

www.bsdmag.org 45

To enable rtadvd(8), add the following lines to
/etc/rc.conf (ensuring that your host is also configured to
forward IPv6 traffic):

rtadvd_enable=“YES”

rtadvd_interfaces=“em0”

Note
Make sure that you only enable transmission of RA
packets on interfaces that you need to do. This can be
done using the rtadvd_interfaces variable.

Now you should create a configuration file for the
rtadvd(8) daemon. This file controls the behavior of the
rtadvd(8) daemon. The rtadvd daemon reads /etc/rc.conf
upon start up, to find out how it should send RA packets. A
sample rtadvd.conf file looks like the following:

ef0:\

 :addr=”2001:db8:ffff:1000::”:prefixlen#64:tc=default:

This tells rtdadvd to advertise itself as a router for subnet
2001:db8:ffff:1000::/64.

Please see the rtadvd.conf(5) man pages for more
information about various options that you can use in this
configuration file.

Note
It would be a good idea to use the tcpdump utility to see how
the RA packets are being sent.

Please note that in this case your machien is configured
as a router and not a host, which has a special meaning in

This can also be achieved by adding the following
variable to the /etc/rc.conf file:

ipv6_gateway_enable=“YES”

After enabling IPv6 forwarding in the /etc/rc.conf file, you
should reboot your system or run relevant rc script:

/etc/rc.d/network_ipv6 restart

The rtadvd(8) daemon is another component that
you may want to enable on an IPv6 router. As
mentioned earlier, the hosts automatically configure
the IPv6 addresses on their interface, based on the
advertisements they receive from the IPv6 enabled
routers on the same subnet. These advertisements are
called Router Advertisement (RA) packets. The rtadvd(8)
daemon sends router advertisements on the specified
network interfaces, helping hosts to automatically
configure IPv6 address on their interfaces. This is
done based on the IPv6 prefix it advertises, as well as
identifying itself as the gateway for the network.

Table 1. List of reserved IPv6 addresses

Address Name Description
:: Unspeci�ed Equivalent to 0.0.0.0 in IPv4

::1 Loopback address Equivalent to 127.0.0.1 in IPv4

fe80:: Link-local

fec0:: Site-local

ff00:: Multicast

Listing 3. The IPv4 scenario to con�gure the static IPv6 address on an interface

$ ifconfig em0 inet6

em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

 options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM>

 inet6 fe80::21c:42ff:fe10:c2b2%em0 prefixlen 64 scopeid 0x1

 inet6 ::21c:42ff:fe10:c2b2 prefixlen 64 autoconf

Listing 4. A sample tunnel setup

ifconfig gif0 create

ifconfig gif0 tunnel x.x.x.x y.y.y.y

ifconfig gif0 inet6

2001:470:1F03:26c::2

2001:470:1F03:26c::1 prefixlen 128

route -n add -inet6 default 2001:470:1F03:26c::1

10/2011 44

IPV6 he Inevitability of IPv6, Part 2

www.bsdmag.org 45

should do is to sign up for such a service and set up a
tunnel according to their instructions.

This is mostly done by encapsulating IPv6 traffic over
a gif(4) tunnel that is established over IPv4 to the other
end. In most cases, setting up such connectivity is pretty
straightforward.

A sample tunnel setup would look like this: Listing 4.
In the above example, a gif interface is created and

established between x.x.x.x (your IPv4 address) and
y.y.y.y (your tunnel broker’s IPv4 address). Then you
should assign IPv6 addresses to the tunnel. In this case,
2001:470:1F03:26c::2 is assigned to your side of the tunnel
and 2001:470:1F03:26c::1 to the other side of the tunnel.
The latter is used as your IPv6 gateway as well.

The tricky part is setting up a default gateway for all
IPv6 traffic to the other side of the tunnel, which is done
using the route command (note the -inet6 flag).

Once you have finished setting up the tunnel, you may
want to test your connectivity by pinging the other side of
the tunnel.

Summary
FreeBSD has had IPv6 support in the base operating
system since its early versions. This support has become
more mature in recent releases. Since we covered basic
configuration for IPv6 in this article, you may want to do
more complex things that are not covered here. There are
a few useful and up-to-date resources that you can find on
the Internet – one of them being the FreeBSD handbook
section on IPv6 and IPv6 Internals in the developer’s
handbook.

PAUL T. AMMANN
Paul lives in New Fair�eld, CT with his wife Eve and two cats.
He recently converted from Linux to OpenBSD although he still
misses his TI 99/4A and Timex Sinclair.

IPv6. In IPv6 terminology, a host is a machine that sends
Router Solicitation messages or listen for RA packets to
figure out its IPv6 address configuration as well as its
gateway. On the other hand, a router is a machine that
sends RA packets and is able to forward packets to the
correct destination.

RIPv6
FreeBSD has built-in daemons that support RIPv1 and
RIPv2 for IPv4 and RIPng or RIP6 (RFC 2080) for IPv6.
The routing daemon that supports RIP6 is route6d(8).

The route6d(8) daemon is almost equivalent to its IPv4
counterpart and can be enabled by setting the following
variable in the /etc/rc.conf file:

ipv6_router_enable=“YES”

Multicast Routing
The ability to route multicast traffic in FreeBSD is available
using third-party software that can be used from the
ports collection. The net/mcast-tools port allows Protocol
Independent Multicast Sparse-Mode (PIM-SM Version
2), PIM-Source-Specific Multicast (SSM using PIM-SM),
and Protocol Independent Multicast Dense-Mode (PIM-
DM Version 2) routing. Once installed, the functionality is
enabled by adding this line to /etc/rc.conf:

mroute6d_enable=“YES”

This will automatically enable the pim6dd(8) (dense mode)
daemon. If you are planning to use pim6sd(8) (sparse mode),
you should also add the following line to /etc/rc.conf:

mroute6d_program=“/usr/local/sbin/pim6sd”

Tunneling
There are certain cases where you want to set up a tunnel
to transport IPv6 traffic over your existing IPv4 network.
This can be a site-to-site VPN between two IPv6 enabled
networks, or getting IPv6 connectivity to an IPv6 service
provider. There are different methods by which you can
set up such tunnels. The most popular methods are
gif(4), faith(4), and stf(4).

GIF Tunneling
There are chances that you don’t have native IPv6
connectivity to the Internet. In that case, you can still
set up a non-native (tunneled) IPv6 connection to the
Internet.

There are several services that offer tunneling to IPv6
networks, such as www.sixxs.net. The only thing you

http://www.sixxs.net

Next issue is coming in
November!

In the next issue:

- Equip your CA with a HSM for < 50
 Euros
- Terminals Served Up BSD Style
- Overview from EuroBSDcon 2011
- and Other !

http://2011.eurobsdcon.org

�������������������������������������
��������������������������

���

���

��

����������������
����������������������������������

������������������������������������
��������������������������������

http://www.ixsystems.com/

	Cover

	Dear Readers,
	Contents
	iXsystems Announces Release
of FreeNAS™ Version 8.0.1
	Configuring a FreeBSD Stealth Logging Server

	Recovering data with
hammer
	Using Openmaps data with Geoserver
	ONMP on OpenBSD 4.9
	OSSEC on OpenBSD(ONMP) 4.9
	Taking a Peek Under the Hood Without Compromising Security

	Protecting Apache From Dos And Ddos Attacks

	The Inevitability of
IPv6, Part 1
	The Inevitability of
IPv6, Part 2

