
http://www.ixsystems.com/

http://www.ixsystems.com/

http://www.ixsystems.com/

11/20114

CONTENTS

Editor in Chief:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Contributing:
Mark VonFange, Toby Richards, Kris Moore, Lars R. Noldan,

Rob Somerville, Erwin Kooi, Paul McMath, Bill Harris,
Jeroen van Nieuwenhuizen

Proofreaders:
Tristan Karstens, Barry Grumbine, Zander Hill,

Christopher J. Umina

Special Thanks:
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Ewa Dudzic

ewa.dudzic@software.com.pl

Advertising Sales:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

Mathematical formulas created by Design Science MathType™.

Dear Readers,
Here is the November issue. We are happy that we didn’t
make you wait for it as long as for October one. Thanks to
contributors and supporters we are back and ready to give
you some usefull piece of knowledge. We hope you will
enjoy it as much as we did by creating the magazine.

The opening text will tell you What’s New in BSD world.
It’s a review of PC-BSD 9 by Mark VonFange. Good reading,
especially for PC-BSD users. Next in section Get Started you
will �nd a great piece for novice – A Beginner’s Guide To PF
by Toby Richards. In Developers Corner Kris Moore will teach
you how to set up and maintain your own repository on a
FreeBSD system. It’s a must read for eager learners.

The How To section in this issue is for those who enjoy
experimenting. Speed Daemons by Lars R Noldan is a
very good and practical text. By reading it you can learn
how to build a highly available web application server
with advanced networking mechanisms in FreeBSD. The
following article is the �nal one of our GIS series. The author
will explain how to successfully manage and commission a
complex GIS project. Text not only for GIS series followers!
We closed the section with article: Equip Your CA With a
HSM For <50 Euros by Erwin Kooi. You may take a closer
look at the security of Certi�cate Authority together with the
author.

Now, some stuff for Admins: Terminals Served Up BSD
Style by Toby Richards and OpenBSD Kernel Memory
Pools: Monitoring Usage With Systat by Paul McMath. The
�rst article presents two solutions for those who want to
establish a BSD terminal server. The second one is addressed
to more advanced users and explains how to understand
memory usage statistics for kernel memory pools as they
are displayed by the systat(1) command on OpenBSD.

In Let’s Talk you will �nd a comparison of FreeBSD 8.2
and Ubuntu Server by Bill Harris. Worth reading to confront
your own opinions or to gain some as well. We say farewell
with EuroBSDcon Overview written from an organizers
perspective by Jeroen van Nieuwenhuizen. Check what you
have missed or see the event you participated in from a
different perspective.

Wish you a good read and hope for a feedback!

Patrycja Przybyłowicz
& BSD Team

Contents

Let’s Talk
FreeBSD 8.2 Against Ubuntu Server
Bill Harris

An Objective Comparison of Two Power House Open
Source Server Platforms, BSD Unix and Linux.

EuroBSDcon Overview
EuroBSDcon 2011 From An Orgnizers
Perspective
Jeroen van Nieuwenhuizen

Have an inside look at the EuroBSDcon and get to
know about events and speeches that took place in the
beginning of October 2011 in Netherlands.

Admin
Terminals Served Up BSD Style
Toby Richards

You may have your own reason for wanting a BSD
terminal server. There are two solutions to this goal:
FreeNX or XRDP. This article will show you how to use
both solutions.

OpenBSD Kernel Memory Pools:
Monitoring Usage With Systat
Paul McMath

This article explains how to understand memory usage
statistics for kernel memory pools as they are displayed
by the systat(1) command on OpenBSD.

What’s New
PC-BSD 9 Turns a New Page
Mark VonFange

Since 2005, PC-BSD has striven to make BSD accessible
to the desktop user. Offering a slew of improvements and
added features, this release brings a more accessible
BSD operating system than ever. Read the review and
find out more about it.

Get Started
A Beginner’s Guide To PF
Toby Richards

OpenBSD, FreeBSD, and PC-BSD use a built-in firewall
called “Packet Filter”. This article is intended for a PF
beginner to get a beginner’s understanding of how to use
PF in OpenBSD.

Developers Corner
Creating Your Own PBI Repository
Kris Moore

In this article author describes the steps required for
setting up and maintaining your own repository on a
FreeBSD system.

How To
Speed Daemons
Lars R. Noldan

From this article you will learn how by using advanced
networking mechanisms in FreeBSD build a high
performance, highly available web application server.

A GIS Strategy For Web-Enabled
Business
Rob Somerville

In his final article of our GIS series, the author will show
you how to successfully manage and commission a
complex GIS project.

Equip Your CA With a HSM For <50
Euros
Erwin Kooi

The CA is used for identification and authentication of
servers, clients and users. Together with author take a
closer look at the security of Certificate Authority in his
own network.

06

10

12

30

14

20

42

34

38

24

11/2011 6

WHAT’S NEW PC-BSD 9 Turns a New Page

www.bsdmag.org 7

Continuing on the successful features of prior versions,
like the intuitive Install Graphical User Interface
(GUI), its PBI system and its comprehensive

configuration menu, PC-BSD 9 brings added functionality
and greater choices for its users.

Greater Options For The Desktop
The most obvious and significant change from prior versions
is the addition of nine new desktop managers. Since it’s
inception, PC-BSD has utilized KDE as it’s default and only
fully supported desktop manager. While many consider
KDE to be the most robust managers available, there are
substantial numbers of users that prefer others for various
reasons. This is very limiting and one of the great things
about running an open source operating system (OS) is the
flexibility it provides. Also, a lot open source users generally
find their desktop manager of choice and stick with it due
to familiarity. Others like to experiment and change things
around. Up until recently, if you wanted to run PC-BSD, that
meant you were forced to use KDE. Even then, you had to
jump through hoops to get utilize any other options and you
would lose some of the functionality built into PC-BSD.

That is all changing in version 9. The development
team has separated the toolchain out from KDE and now
everything is running in the Qt framework. The first four
available desktop managers are GNOME, KDE, LXDE,
and XFCE. All of these are fully supported in PC-BSD,
meaning all utilities have been integrated into the desktop
environment itself. The other five available desktop
managers are Awesome, Enlightenment, IceWM, ScrotWM
and WindowMaker. While these are not fully supported
within the desktop environment, all the PC-BSD utilities are
still available, though you may need to run commands via
the Command Line in order to get them running. This is just

a small barrier to new users, and power users should have
no issues navigating through any of the available options.

For ease of use, all of these desktop managers are
available for installation by simply clicking check-boxes
during installation. No additional work is required for the
user. The manager of choice is automatically installed and
runs on the first reboot. Another great feature is that these
managers are also available after initial installation. All you
need to do is open up the PC-BSD Control Panel and Run
the System Manager Utility. This brings up a SuperUser
password prompt. From there you can uninstall and reinstall
desktop managers at will from the System Packages tab
and just reboot to switch to the new manager.

This gives the user a high degree of control over their
system without requiring a great deal of technical knowledge.
New users will need to be careful when switching to the
unsupported desktop managers, as not all features are
available via the UI. Even if a user does switch to a manager
they aren’t comfortable with, simply running the pc-controlpanel
command in a terminal will bring up the PC-BSD Control Panel
for them to switch to another. For those willing to persevere
with those desktop managers, the PC-BSD Wiki page outlines
the various steps needed to run unsupported utilities.

A Revamped Packaging System
One of the staples of PC-BSD is it’s Push Button Installer
or PBI feature. With ease of use in mind the PBI system
makes installing applications a simple point-and-click
operation. Similar to the .exe and .dmg file formats of
Windows and OSX, PBI’s are self-contained applications
that take the user through the install process via a GUI
system and avoiding any need for utilizing the Command
Line Interface (CLI). This greatly helps reduce the learning
curve for users to install their favorite applications.

PC-BSD 9 Turns a New
Page
Since 2005, PC-BSD has striven to make BSD accessible to
the desktop user. Offering a slew of improvements and
added features, this release brings a more accessible BSD
operating system than ever.

11/2011 6

WHAT’S NEW PC-BSD 9 Turns a New Page

www.bsdmag.org 7

to the PBI installation system under version 9 is that users
can install most programs without a root password. This
will be beneficial for systems with multiple users.

More Intelligence, More Versatility
Beyond improvements to the installation system, the
PBI system has been revamped is in regard to updating
applications as well. Before, upgrading a PBI involved
downloading the entire new package. From PC-BSD 9
and beyond, when PBI’s are upgraded, only changed
files will be downloaded. This means saved time in
downloads, which will especially help those on slower
connections. In addition, the Upgrade Manager itself has
been redesigned. In order to facilitate kernel updating,
PC-BSD will now utilize the GENERIC FreeBSD kernel.
This means that, in addition to the GUI, users will be
able to upgrade via built-in freebsd-update command. This
means that user accounts won’t need root privileges to
run upgrades. Furthermore, the Upgrade Manager will
enable users to update the FreeBSD world and kernel, as
well as packages, ports, PBI’s and security updates.

As mentioned earlier, PC-BSD utilities now run
independently of the desktop. This has enabled a whole
new Control Panel that runs regardless of which manager
you are running at the time. From it, you can access all
manner of system settings, even the utilities for desktop
managers you aren’t currently running. Along with this
new control panel comes a long overdue improvement to
display configuration. Up until version 9, changing display
resolution has required rebooting your system. With the
new control panel, all you need to do is click on the Display
icon in the hardware section of the menu. This will bring
a prompt indicating that the current session will be exited
and you will be brought to a display configuration menu
after asking for your root password. From there, you can
adjust your display resolution, color depth and select the

Another issue the PBI system is designed to solve is
dependency conflict and breakage. Different applications
sometimes require different versions of the same
dependency. This means that installing one package would
may break the functionality of another. In order to avoid
this, users would have to use workarounds, which can be
daunting to those who don’t know their way around the CLI.

One problem this caused was that each individual PBI
had to have all of it’s own libraries and dependencies
contained within itself. This caused redundancy and
substantially increased the necessary size of the programs
as well as runtime memory. PC-BSD 9 has revamped the
PBI system to utilize intelligent checks on the back-end of
pbi’s via a hash database in order to determine whether
the needed libraries and dependencies already exist.
This made it possible to avoid the redundancy issue and,
consequently, lightened up the programs a great deal.
These back-end checks go so far as to recognize when
a library is no longer needed due to an uninstall. This
creates a lighter PC-BSD with less bloat for the user.

Not only does PC-BSD 9 solve the problems of
redundancy and breakage, it also revamped the way
PBI’s are downloaded and installed. This new method is a
feature called AppCafe(TM). Prior to version 9, users had to
go to pbidir.com in order to search for and download PBI’s.
AppCafe simplifies this whole process by integrating the
PBI library into the desktop environment itself for an easy
to use experience. This utility has added sanity checks
automatically detects your system architecture and installs
the proper PBI for you. Programs can be searched for by
name via the search bar or you can browse through the
conveniently categorized menu. Simply double click on
the desired program and it will populate to the installed tab
where you can view it’s download and installation status. If
you want to search for more programs, just switch back to
the Browse tab and repeat the process. Another change

Figure 1. PC-BSD Control Panel offers a GUI method of changing
destop managers after installation

Figure 2. AppCafe(TM) brings improved ease of use to the PBI
installation system

11/2011 8

WHAT’S NEW

best driver for your video card. On the subject of display
drivers, Nvidia drivers are now available for install via the
install GUI as well as the control panel. The advanced tab
of the display menu allows users to set up options such as
refresh rates and dual-monitor configuration. In addition,
once GEM/KMS support for FreeBSD is finalized, PC-
BSD will offer improved Intel / ATI graphics support.

If those improvements were not already significant
enough, there are even more key additions to PC-BSD
9. The first of which is the ability to install directly to a
BootCamp partition. This should be a welcome addition for
many mac users. Considering that OSX is largely based off
of FreeBSD, this is a fitting addition to PC-BSD’s repertoire.
The Life Preserver feature brings additional support for
system backups. While you can still simply add files to an
external via the file manager or install one of the backup
utilities available in AppCafe, Life Preserver provides an
integrated utility for both manual and automated system
backups to any external device with SSH and rsync
enabled. It provides the user with a comprehensive GUI
to handle things such as how often to back up, how many
backups to keep, configuring which files and directories to
back up, as well as the means to restore a backup.

Several other additions are also available on PC-BSD 9.
First off is a wireless configuration tool that lists available
networks and allows for a quick connection. Second, Myth TV
and XBMC are available during or after install for those who
want to run media from their PC-BSD system. Touchscreen
drivers are now available and the development team intends
for virtual keyboard and touchscreen capabilities from
installation on at some point in the future. This means that
you may see PC-BSD running on tablets some day. Version
9 also comes with Ipv6 enabled by default. Lastly, PC-BSD
now includes a script to automatically detect USB devices for
desktop managers that don’t do so on their own. There are
other minor improvements, tweaks and bug-fixes of course,
but those are the most noteworthy.

A Look Under The Hood of PC-BSD
While offering intuitive GUI-based menus for virtually all
aspects of system management, PC-BSD is still offers the
full benefits of FreeBSD as well. Starting at version 7, PC-
BSD releases have been tied in with FreeBSD releases. It
has many added features, but PC-BSD utilizes the current
FreeBSD source tree as its basis. This means that when
you see a new major release of FreeBSD, you know that
you are going to see many improvements and new features
along with it. One of the biggest new features in FreeBSD
9 is the addition of USB3 support, which means improved
performance of USB devices. Another advantage of FreeBSD
is it’s ZFS support. The newest release has updated ZFS to
v28. This will likely be integrated into PC-BSD in version 9.1
or 9.2. ZFS is a robust open source file system with a high
degree of data integrity due to capabilities such as dynamic
striping, variable block sizes and cache management, as
well as features such as encryption, deduplication and
improved software RAID. FreeBSD 9 also offers multiple
improvements for multi-processor support including NUMA
support and large scale SMP support as well as 4k sector
drives. These features bring enterprise capabilities to PC-
BSD unseen in most desktop oriented OS distributions.

Other changes to FreeBSD include improved performance
for virtual machines and laptops, better video support
in linux compatibility mode, open source 3D hardware
acceleration, and many others. These improvements all
come on what is arguably the most stable and secure OS
on the market, whether it’s open source or proprietary.

A Stable, Secure System, With Ease of Use in Mind
All in all one can say that the PC-BSD development team has
made many major improvements over previous versions.
From additional features to improved system management,
PC-BSD 9 is an intelligent, versatile desktop operating
system that will bring BSD to the desktop for many new
users. With FreeBSD as a basis, one can rest assured that
PC-BSD is a stable and secure operating system. With the
intuitive features provided, users also gain many powerful
tools for designing a desktop system that fits their needs.
From new users to power users, home systems to enterprise
systems PC-BSD 9 provides something for everyone.

MARK VONFANGE
Mark VonFange is the Professional Services Manager at
iXsystems, providing oversight and coordination of its FreeBSD,
PC-BSD, and FreeNAS support and development services. The
Professional Services Team provides services ranging from
mission critical support to software and �rmware development
to private consultation. Mark also develops internal and
external documentation for division sales and marketing.

Figure 3. The Life Preserver Utility is opened by clicking the icon in
the system tray, which launches a GUI based menu for adding new
backups.The picture shows the utility being opened in the XFCE
desktop manager

http://www.dotlike.net/

11/2011 10

GET STARTED A Beginner’s Guide to PF

www.bsdmag.org 11

This guide may apply to other *BSD operating systems,
but I’ve not tested them all. I have tested PC-BSD,
which means that these instructions will also work for

FreeBSD. More advanced topics may be OpenBSD specific.
Neither NetBSD nor Dragonfly BSD use PF.

I find that the OpenBSD documentation often throws
too much information at the beginner from the get-go.
The PF User’s Guide is no exception. The following is a
highly simplified subset of those instructions. The basic
PF syntax that the beginner needs to know is this:

action [direction] [quick] [on interface] [af] [proto protocol] \

 [from src_addr] [to dst_port]

I have intentionally omitted more advanced/obscure options.

• action: This is either block or pass. Self explanatory.
• direction: This is either in or out
• quick: If a packet matches a rule specifying quick,

then that rule is considered the last matching rule and
the specified action is taken.

• interface: Self explanatory. It’s vic0 on VMware.
• af: inet for IPv4 or inet6 for IPv6.
• proto: tcp, udp, icmp, or icmp6.

You can use the all directive in some places, but we’re not
going to talk about that other than for the final two rules in

/etc/pf.conf file. In most cases, you probably want to
specify what is allowed, and then block everything else.
To do this, we make liberal use of the quick keyword. For
incoming traffic, let’s say that you only want to allow SSH &
HTTP. Add these rules:

pass in quick on vic0 proto tcp to port 22

pass in quick on vic0 proto tcp to port 80

Notice that I simply exclude those directives that I don’t
need. In this case, I don’t need to specify which version
of IP or where the traffic is coming from because I want to
allow this traffic on both IP versions and from anywhere.

Now, allowing pings is a little bit trickier. ICMP is a
different beast than TCP or UDP. We do have to specify
the all keyword to mean from anywhere, to any port. We
also have to specify the type of ICMP packet (echoreq):

pass in quick inet proto icmp all icmp-type echoreq

Let’s also only allow certain outgoing traffic. This could
protect you in case a rogue user try to use an application
that you don’t want to be used. For this example, we’ll let
our server use:

• FTP (for commands such as pkg _ add)
• SSH (remote access to other SSH servers)

A Beginner’s
Guide to PF
OpenBSD, FreeBSD, and PC-BSD use a built-in firewall called
“Packet Filter” (PF for short). This article is intended for a
PF beginner to get a beginner’s understanding of how to
use PF in OpenBSD. Several important intermediate and
advanced concepts are intentionally left out.

What you will learn…
• A bare bones understanding of the /etc/pf.conf �le for basic

security.

What you should know…
• The ability to navigate your BSD’s command line.
• Some knowledge about TCP & UDP port numbers.

11/2011 10

GET STARTED A Beginner’s Guide to PF

www.bsdmag.org 11

telnet bsdmag.org 22

Trying 79.125.23.174...

Again, [CTRL+C] gets you back to a prompt. Now that
we know what to expect on allowed ports, let’s try one
that isn’t allowed. Let’s try TFTP:

telnet bsdmag.org 69

Trying 79.125.23.174...

telnet: connect to address 79.125.23.174: No route to host

We know that there’s a route to the host, so we must be
blocking outbound TFTP connections with PF. That’s key.
When telnet tells you that there’s no route to a host that you
can otherwise connect to, then it’s time to look at /etc/pf.conf.

What happens if you have a remote host, and you
accidentally lock yourself out of SSH? Well, just like my
byline says, that’s one good reason to use bsdvm.com as
a hosting provider. I can get to the VMware console to re-
enable SSH. Otherwise, I’d be up a certain creek which shall
remain nameless. As a disclaimer: I am in no way affiliated
with bsdvm.com. I am just a fan. A big fan. Having console
access is just so darned convenient for many, many tasks.

In the upcoming 5.0 release of OpenBSD we can look
forward to using packet filter rules to prioritize certain
traffic. More on that later. For now, you ought to have a
grasp of the PF basics. Enjoy your new firewall!

• SNMP (so that sendmail can send us notifications)
• DNS (so that our server can resolve host names)
• HTTP (for using commands such as wget)
• Ping

Here are the rules:

pass out quick on vic0 proto tcp to port 20 # Used by FTP in PASV mode

pass out quick on vic0 proto tcp to port 21

pass out quick on vic0 proto tcp to port 22

pass out quick on vic0 proto tcp to port 25

pass out quick on vic0 proto udp to port 53

pass out quick on vic0 proto tcp to port 80

pass out quick on vic0 proto tcp to port 443

pass out quick inet proto icmp all icmp-type echoreq

To block all traffic that we haven’t allowed above, simply
add more lines to the end of the file:

block out all

block in all

Now we see the importance of the quick directive. With it,
the packet filter immediately applies the rule for matching
traffic (pass). Without it, the packet filter continues to
look for matches until the end of the rule set. Since block
out all & block in all match all traffic, we’d still be blocking
everything without quick. Could we have avoided all of
the business with quick by putting the block commands
at the top? Probably. I just find that using quick, and then
having the block commands at the bottom makes the
config file easier to read and understand. Now, simply do
pfctl -f /etc/pf.conf to reload and test your rules.

What happens when something goes wrong? If you think
that your firewall rules are causing problems, then comment
out your two block rules at the end of your /etc/pf.conf file.
Issue pfctl -f /etc/pf.conf to reload the rules, and see if that
fixes things. The telnet command is also your friend. Notice
above that I have not allowed the telnet protocol (TCP port
23). The cool thing about the telnet utility is that it allows us
to make a connection on any TCP port. We know that port
80 is HTTP, so we can test whether port 80 is working:

telnet bsdmag.org 80

Trying 79.125.23.174...

Connected to bsdmag.org.

Escape character is '^]'.

[CTRL+C] will get you back to a prompt. Now let’s try
to connect to something that our firewall allows, but the
remote host does not. We hang indefinitely at:

TOBY RICHARDS
Toby Richards has been a network administrator since 1997. He
considers himself to be a jack of all operating systems, but a true
master of none. He feels this to be a mastery in its own right since
he understands principles that are common to all operating
systems. His articles are the product of teaching himself to
become better with OpenBSD and PC-BSD. He simply writes
about what he has learned most recently. For a hosting provider,
he highly recommends bsdvm.com. They give you access to your
VMware console so that you can re-install your OS at will, and
with the settings of your own choosing.

References
• For the official list of TCP and UDP ports, we can check

with the Internet Assigned Numbers Authority (IANA): http://
www.iana.org/assignments/service-names-port-numbers/
service-names-port-numbers.xml

• For more documentation on PF, consult your *BSD’s
documentation:

• FreeBSD & PC-BSD: http://www.freebsd.org/doc/en_US.ISO
8859-1/books/handbook/�rewalls.html

• OpenBSD: http://www.openbsd.org/faq/pf/index.html

http://bsdvm.com
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls.html
http://www.openbsd.org/faq/pf/index.html

11/2011 12 www.bsdmag.org 13

This allows an individual or organization to maintain
and distribute their own set of software packages,
in a secure and easy manner. In this article we

will take a look at the steps required for setting up and
maintaining your own repository on a FreeBSD system.

One of the first steps in building a PBI repository is
to first download and install the pbi-manager from the
FreeBSD ports tree:

 # cd /usr/ports/ports-mgmt/pbi-manager

 # make install

After installing the pbi-manager, a variety of new
command-line tools will become available for managing
PBIs and repositories. Running a repository requires
that all the built PBIs be digitally signed with openssl, for
security and identification purposes. The next step is to
generate a public / private key pair with openssl using
the following command:

 # openssl genrsa -out privkey.pem 4056

 # openssl rsa -in privkey.pem -pubout > pub.key

After running these commands, you will be left with
two files, privkey.pem and pub.key. The privkey.pem

will be used to digitally sign your created PBI files,
and the pub.key will be included with the repository
configuration (.rpo) file. In order to begin creating your
new repository you will need a FTP/HTTP/HTTPS
location for hosting your repository’s meta files, as
well as a location(s) for clients to download PBI files.

These can be a public internet URL, or private LAN
server, as long as it is accessible to your intended target
audience.

Once you have the location URL, the next step is
to create your repository .rpo file with the following
command:

 # pbi_makerepo --desc “My Example Repository” --key

 pub.key --mirror “ftp://ftp.example.org/pbi-files” --url

 “http://www.example.org/pbi-meta” /root

After running the command above, you will left with a
pbi-repo.rpo file in the /root directory, or wherever you
specified.

This file is all that is needed for clients to register and
begin using your new repository. On the client system, this
would be installed with a single command:

 # pbi_addrepo pbi-repo.rpo

Creating Your Own PBI
Repository
With the major overhaul of the PBI system for the upcoming PC-
BSD 9.0, it is now easier than ever to setup and run your own PBI
repository, even on traditional FreeBSD systems.

11/2011 12 www.bsdmag.org 13

Once the repository is registered on the client system,
the pbi daemon will automatically keep track of
downloading and updating both meta-files and PBIs from
the URL’s you included in the repository configuration
file. Meanwhile, back on the server side, we need to start
creating some meta-data and PBI files so the clients
have something to download and run. Luckily the pbi-
manager includes utilities which make the process quick
and easy. The first file we can create is meta-data for the
application(s) we wish to distribute via this repository.
This meta-data is used to give the client information
about the applications available in your repository, such
as categories, application names, descriptions, icons,
authors, etc. First we will need to create some category
for the application we want to distribute.

 # touch pbi-meta-9

 # pbi_metatool add --cat -n “Archivers” -d “File

Archivers and Utilities” -i “http://www.example.org/

pbiicons/archivers.png” pbi-meta-9

The above commands will create your initial meta file,
which will need to be named pbi-meta-<Major Version

Number>. (I.E. 9, for FreeBSD 9.x, 8 for FreeBSD 8.x).
Next we will need to add some information about the
application we are going to distribute.

 # pbi_metatool add --app -n “cabextract” -c “Archivers”

 -a “Stuart Caie” -d “Utility for reading and extracting

.cab files.” -i “http://www.example.org/pbi-icons/cabextract.png”

 -k “cab,archive,extract” -l “LGPL” -t “Text” -u “http:

//www.cabextract.org.uk” pbi-meta-9

In this example we have added the Cabextract meta-data,
which includes the Author (-a), Keywords (-k), License
(-l), Type (-t) and others. For a more complete description
of all the available flags, you can run the command
pbi _ metatool add. Now that we have some initial meta-
data, we can compress the file with bzip2 and upload it
to our meta location: http://www.example.org/pbi-meta/
pbi-meta-9.bz2. On the client system, they will be able to
use the pbi _ browser command, or the AppCafe GUI (If on
PC-BSD) to browse this meta-data.

With the initial meta-data in place, we can now begin
the process of building PBI files. In this example we will
be building the cabextract package from the FreeBSD
ports tree. This command will expect that you have the
FreeBSD ports tree already extracted and ready to be
used.

 # pbi_makeport --sign privfile.key archivers/cabextract

Once the build is finished, you will be left with a
resulting cabextract-<ver>-<arch>.pbi file which can now
be uploaded to your PBI mirror server. Lastly we need
to add this PBI to a pbi-index-9 file, which clients will
download along with the meta-data. Adding this file can
be done with the following commands:

 # touch pbi-index-9

 # pbi_indextool -f cabextract-1.2-amd64.pbi -u

 “archivers/cabextract-1.2-amd64.pbi” pbi-index-9

The -u option in this example will be the location of
where you have uploaded the PBI file to your Mirror
URL. In addition, we can also bzip2 the pbi-index-9, and
upload the pbi-index-9.bz2 file to the meta URL, alongside
the pbi-meta-9.bz2 file we previously uploaded. Now your
clients will be able to start downloading and installing
PBIs from your repository, using the pbi _ add command
or the AppCafe GUI.

The pbi-manager includes a number of other tools and
utilities for creating and managing PBI files. Repository
maintainers may also find the pbi_autobuild command
of interest, which monitors the ports tree, automatically
rebuilding PBI’s when the respective port version is
updated. This command can be used with optional
module configurations, allowing additional make options,
desktop icons, helper scripts and other data to be used
in the building of your PBI files. Using this and other
commands, managing a PBI repository becomes easy to
initialize and maintain. All the supplied commands include
man pages with additional tips and options for power
users and additional information may be obtained via the
links below.

Creating Your Own PBI Repository

KRIS MOORE
Kris Moore is the founder and lead developer of PC-BSD. He lives
with his wife and four children in East Tennessee (USA), and
enjoys building custom PC’s and gaming in his (limited) spare
time. kris@pcbsd.org

More Information on the Web
• PBI-Manager Homepage: http://wiki.pcbsd.org/index.php/

PBI_Manager
• PBI Module Builder Guide: http://wiki.pcbsd.org/index.php/

PBI_Module_Builder_Guide
• PBI Developers Mailing List: http://lists.pcbsd.org/mailman/

listinfo/pbi-dev

http://www.example.org/pbi-meta/pbi-meta-9.bz2
http://www.example.org/pbi-meta/pbi-meta-9.bz2
mailto:kris@pcbsd.org
http://wiki.pcbsd.org/index.php/PBI_Manager
http://wiki.pcbsd.org/index.php/PBI_Manager
http://wiki.pcbsd.org/index.php/PBI_Module_Builder_Guide
http://wiki.pcbsd.org/index.php/PBI_Module_Builder_Guide
http://lists.pcbsd.org/mailman/listinfo/pbi-dev
http://lists.pcbsd.org/mailman/listinfo/pbi-dev

11/2011 14

HOW TO Speed Daemons

www.bsdmag.org 15

It’s no secret that web applications have recently been
returning us full circle to a network computing model
where your computer is only a mechanism used to

connect you to your applications. Gone are the days of a
single i486 running hundreds of websites. Web application
servers have grown more powerful and infinitely more
complex. Reliability of these web applications is at least
as important, if not more so, than raw performance. The
following details a web application server cluster Six Feet
Up built for a Fortune 500 company specifically to address
the issues of providing high performance, highly available
web applications in a modern business setting.

Requirements
First, we need to review the requirements the application
needed to meet.

• 99.9% application uptime
• Pages load in under 10 seconds to users on 1.5Mb/s

internet connections
• User registration processing in under 20 seconds on

1.5Mb/s internet connections

• System must support up to 50,000 registered users
• System must integrate with other client-provided

systems

Design
The application used in this project is Plone, an enterprise
content management system capable of meeting the use
requirements of the client. In addition to Plone, an Apache

Speed Daemons
Using advanced networking mechanisms in FreeBSD to
build a high performance, highly available web application
server.

What you will learn…
• What CARP is and how to use it
• Installing and con�guring ifstated
• Brief introduction to the ZFS �lesystem

What you should know…
• How to use the ports system
• Basic understanding of the command line
• Basic understanding of rc.conf
• Understanding of TCP/IP networking

Figure 1. Logical Layout of Hosting Stack

����������

������

��������������������

�������� ����������������

������

������������

��������� ������������������

������������

���������

��������� ������������������

���������

System Tools: carp(4), zfs(1M), nfsd(8), sftp(1), […]
Major Ports: zope, solr, postgresql, nginx, varnish, haproxy,
ifstated, […]
External Packages: plone, […]

11/2011 14

HOW TO Speed Daemons

www.bsdmag.org 15

• Two Application Servers – This is where the Plone
CMS and Apache Solr full text search applications
are handled

• Two PostgreSQL Database Servers – Plone operates
with a PostgreSQL database back end, and maintains
a reports database for data processed by the
application.

Proxy services are configured identically across our front
end proxy servers. The proxy servers serve as a gateway
to the application servers and don’t have very high loads
even during peak traffic hours. The CARP protocol is
being used to provide redundancy in the event of a server
failure or in case of a service failure. CARP essentially
allows you to assign a single IP address across multiple
servers and provides an internal mechanism for failing
over from one server to the next seamlessly. Setting up
CARP requires recompiling the kernel. This section of
the handbook: http://www.freebsd.org/doc/handbook/
kernelconfig.html covers how to recompile the kernel. The
option to enable CARP is: device carp. After restarting
with the custom kernel, edit /etc/rc.conf similar to these
examples: Listing 1.

The interface em0 on each server is a unique private IP
address. The em1 interface has a unique public IP address.
The carp0 interface is a shared private IP address between
the two servers. (Figure 2: Proxy Server Logical Layout)
Finally the carp1 interface is a shared public IP address.
The vhid needs to be unique per shared address. It is
possible to share an address across two or more servers.
The server with the lowest advskew determines which is
the MASTER and is serving the address. See the carp
manpage for more information on the specific values.

In the event the MASTER proxy server fails, the BACKUP
with the lowest advskew will automatically promote itself
to the MASTER state and start serving traffic. This change
over usually drops three or fewer packets making it nearly
seamless to any end user, especially on a stateless
protocol like http.

By itself, CARP is only concerned with the network
state of it’s peers, and does not detect the state of

Solr full text search was integrated to implement excellent
search capabilities throughout the application. Going into
the specifics of setting up the Plone application itself is
beyond the scope of this article.

Due to how Plone runs, we have a relatively non-
traditional web proxy chain installed using the nginx web
server, varnish reverse proxy cache server, and haproxy
load balancer. These services are in the ports tree. The
specific installation and configuration of these services
are also beyond the scope of this article.

There are six physical servers dedicated to the Plone
application. (Figure 1: Logical Layout of Hosting Stack) In
addition, there is a lower capacity server setup at another
datacenter for disaster recovery/business continuity.
Finally, there are a total of three ZFS based storage
servers providing data storage and shipping capabilities
to the application. The 6 physical servers used to host this
Plone application are paired up as follows:

• Two Proxy Servers – These provide web caching and
proxy services
• Nginx web server – listening on ports: 80/443
• Varnish caching reverse proxy server – listening

on port: 3180
• Haproxy load balancing with session affinity –

listening on port: 3380

Figure 2. Proxy Server Logical Layout

����������

������

��������������������

�������� ����������������

������

Listing 1. An example carp setup in rc.conf

proxy1 /etc/rc.conf

hostname="proxy1.mysite.com"

cloned_interfaces="carp0 carp1"

ifconfig_em0="inet 10.0.0.1 netmask 255.255.255.0"

ifconfig_em1="inet 12.12.12.1 netmask 255.255.255.0"

ifconfig_carp0="vhid 4 pass vhid4 advbase 3 advskew 50

10.0.0.3/24"

ifconfig_carp1="vhid 10 pass vhid10 advbase 3 advskew

50 12.12.12.3/24"

ifconfig_lo0="inet 127.0.0.1"

proxy2 /etc/rc.conf

hostname="proxy2.mysite.com"

cloned_interfaces="carp0 carp1"

ifconfig_em0="inet 10.0.0.2 netmask 255.255.255.0"

ifconfig_em1="inet 12.12.12.2 netmask 255.255.255.0"

ifconfig_carp0="vhid 4 pass vhid4 advbase 3 advskew 100

10.0.0.3/24"

ifconfig_carp1="vhid 10 pass vhid10 advbase 3 advskew

100 12.12.12.3/24"

ifconfig_lo0="inet 127.0.0.1"

http://www.freebsd.org/doc/handbook/kernelconfig.html
http://www.freebsd.org/doc/handbook/kernelconfig.html

11/2011 16

HOW TO Speed Daemons

www.bsdmag.org 17

Listing 2a. An ifstated con�guration on proxy servers

Set the default state to proxy_up:

init-state proxy_up

carp1 is the main site:

proxy_carp_up = "carp1.link.up"

proxy_carp_init = "carp1.link.unknown"

Ping our own proxy chain as well as the CARP master

every 15 seconds:

proxy_ping = '("/usr/local/bin/checkproxy.sh" every 15)'

proxy_remote_ping = '("/usr/local/bin/check_remote_

proxy.sh" every 15)'

Define a state in which there is a problem with the

proxy chain

on this machine. This state is set if the proxy_ping

command returns

unsuccsessful (non-zero) status:

state proxy_down {

 init {

 run "sleep 10"

Log the problem with the proxy chain, and attempt to

bring

the interface down if we're the CARP master:

 run "echo 'date': Proxy chain down >> /tmp/

ifstate.log"

 if $proxy_carp_up {

 run "echo 'date': Proxy chain is down but I\'m

CARP master. \

 Attempting to become CARP slave by increasing

advskew \

 >> /tmp/ifstate.log"

 run "ifconfig carp0 advskew 250"

 run "ifconfig carp1 advskew 250"

 }

Monitor the proxy chain on this machine, and set the

state to up

if the ping script has a successful (0) exit status:

 if $proxy_ping {

 set-state proxy_up

 }

If we can't get through to the site using this server,

or the

CARP master go to panic state:

 if ! $proxy_remote_ping {

 set-state panic

 }

}

End of proxy_down state

Define the default state, with the proxy chain

responding normally.

state proxy_up {

 init {

 run "ifconfig carp0 advskew 50"

 run "ifconfig carp1 advskew 50"

 run "echo 'date': Proxy chain up >> /tmp/ifstate.log"

 }

Set the state to proxy_down if the ping script returns

an unsuccessful

(non-zero) status:

 if ! $proxy_ping {

 set-state proxy_down

 }

If the proxy chain is up on this machine, but it is

not the CARP master

and the site is unresponsive attempt to take over by

decreasing advskew:

 if ! $proxy_carp_up {

 if ! $proxy_remote_ping {

 run "echo 'date': My proxy chain is up but I\'m

CARP slave and \

 site isn\'t responding. Attempting to become CARP

master

 by decreasing advskew. >> /tmp/ifstate.log"

 run "ifconfig carp0 advskew 5"

 run "ifconfig carp1 advskew 5"

 }

 }

}

11/2011 16

HOW TO Speed Daemons

www.bsdmag.org 17

services hosted on the individual proxy servers. There
are a number of different tools that can be used to test
the proxy chain and take actions based on event failures.
We chose to deploy ifstated (/usr/ports/net/ifstated) The
description of this tool in the man page reads as follows:
Quotation.

Quotation: A snip from man ifstated
The ifstated daemon runs commands in response to network state changes,
which it determines by monitoring interface link state or running exter-
nal tests. For example, it can be used with carp(4) to change running
services or to ensure that carp(4) interfaces stay in sync, or with pf(4)
to test server or link availability and modify translation or routing
rules.

Ifstated was built with CARP in mind, and as a result
is a lightweight tool that provides a lot of flexibility.
The configuration on proxy1 and proxy2 is as follows:
Listing 2.

There are two scripts called by ifstated every 15
seconds. These are checkproxy.py and check_remote_
proxy.py. Checkproxy.py connects to the local unique
public IP address and makes an http connect to the
application. If the application does not respond the script
exits with a non zero exit code. Ifstated will detect this
and, depending on the current state, will take appropriate
steps based on the configuration.

In simple tems, if proxy1 is the master, and checkproxy.py
determines there is a problem with the local proxy chain,
but the check_remote_proxy.py determines that the
remote proxy is functioning properly ifstated will raise the
local advskew of the carp interfaces to 250. This will usually
result in proxy1 being demoted to BACKUP status. At the
same time, proxy2 will have checked the local and remote
proxy chain. If proxy2 is in state BACKUP, and gets a non-
zero exit code when check_remote_proxy.py runs ifstated
will lower the advskew on the local CARP interfaces to
5. This will under most circumstances promote proxy2
to MASTER status. The panic state occurs when neither
proxy server has a functioning proxy chain. In this state
ifstated attempts to restart each component in the proxy
chain, and then lower the advskew to 5.

An external monitoring system is used to detect outages
and send alerts. This configuration of ifstated is not
generating any notifications to our systems administration
staff. Ifstated is used only for attempting to keep the site
alive in the event of service or server outages. This puts
notification tasks in a place that is independent of both
proxy servers and provides notifications in the case of
site-wide outages as well.

The application servers are using a single internal
CARP address for the Solr search process.

(Figure 3: Database Server Logical Layout) This
provides a common address for each of the Zope
application servers to connect to for internal search
functions. Replication of the Solr data is managed by Solr
itself via internal replication mechanisms. Ifstated is not
running on the application servers as the advanced state

Listing 2b. An ifstated con�guration on proxy servers

End of proxy_up state

Define the state in which the site is unreachable

because there is either

a problem with the proxy chain on all proxy servers,

or there is a

problem on the application servers. We've avoided

restarting services

for better debugging up until this point. In this

case since it is a total

outage we will restart the proxy chain and set

advskew low as a last attempt

to automatically correct an outage situation. In

order to keep from

constantly changing CARP state causing erratic

behavior the only way to

get out of this state is manual intervention.

state panic {

 init {

 run "echo 'date': ALL proxy servers are unable

to reach the site. \

 Entering panic state and attempting to restart

the entire

 proxy chain. MANUAL INTERVENTION IS REQUIRED AT

THIS POINT

 TO RESTORE AUTOMATIC FAILOVER >> /tmp/

ifstate.log"

 run "/usr/local/etc/rc.d/nginx restart"

 run "/usr/local/etc/rc.d/varnishd restart"

 run "/usr/local/etc/rc.d/haproxy restart"

 run "ifconfig carp0 advskew 5"

 run "ifconfig carp1 advskew 5"

 }

}

11/2011 18

HOW TO

www.bsdmag.org

monitoring features aren’t necessary here. The Zope
application servers are load-balanced via haproxy on the
proxy servers further up the stack.

Moving further into the stack, we have a pair of database
servers running PostgreSQL 9.0. Each of these servers
also has a unique private IP address, as well as a shared
CARP address. (Figure 4: Database Server Logical
Layout) PostgreSQL is handling replication internally
using Database2 as a read-only hotspare.

Ifstated is running on these servers with the following
configuration: Listing 3.

Similar to the proxy servers, ifstated calls an external
script every 10 seconds to check the state of the
PostgreSQL service. On these servers, if the database
fails over we do not want to automatically attempt to
recover like we do with the proxy chain. In the case of
a database failure a systems administrator’s attention is
desired to prevent potential data corruption or loss.

Figure 3. Database Server Logical Layout

������������

��������� ������������������

������������

Figure 4. Database Server Logical Layout

���������

��������� ������������������

���������

Listing 3. An ifstated con�guration on database servers

init-state psql_down

db_carp_up = "carp0.link.up"

db_carp_init = "carp0.link.unknown"

STATUS = '("/usr/local/bin/psql-status.sh > /dev/null

2>&1" every 10)'

state psql_down {

 if ! $STATUS {

 run "echo 'date': psql not running >> /tmp/

ifstate.log"

 }

 if $STATUS {

 if ! $db_carp_up {

 run "echo 'date': psql up and CARP is down,

changing state to slave >> /tmp/

ifstate.log"

 set-state db_slave

 }

 if $db_carp_up {

 run "echo 'date': psql up and CARP is up,

changing state to master >> /tmp/

ifstate.log"

 set-state db_master

 }

 }

}

state db_master {

 init {

 run "echo 'date': CARP link UP >> /tmp/

ifstate.log"

 run "echo 'date': promoting Postgres to master

>> /tmp/ifstate.log"

 run "/usr/bin/touch /var/db/pgsql/data/FAILOVER"

 }

 if ! $db_carp_up {

 set-state db_slave

 }

 if ! $STATUS {

 run "echo 'date': psql changed to non-running

state >> /tmp/ifstate.log"

 set-state db_slave

 }

}

state db_slave {

 init {

 run "echo 'date': CARP link DOWN >> /tmp/

ifstate.log"

 run "/sbin/ifconfig carp0 advskew 250 >> /tmp/

ifstate.log"

 }

 if $db_carp_up

 set-state db_master

}

11/2011 18

HOW TO

www.bsdmag.org

The distributed cluster of servers as well as the Plone
application and Apache Solr full text search require file
system data be shared across multiple machines. One
of the customer’s requirements was integrating the
Plone application with some of their internal systems. To
accomplish this, an sFTP server is setup on the proxy
servers, allowing the customer to place a data file which
will in turn to be processed by the application servers
daily. In order to make the data available to the application
servers, a ZFS filesystem, ftpdata, was configured on
our ZFS-based storage server. The ftpdata filesystem is
shared via NFS and is mounted on both proxy servers as
well as both application servers. The Zope application also
has data that needs to be available to all of the running
application servers across both physical machines. This
data is also stored on the ZFS storage servers using NFS
mount, zopedata, which is mounted on both application
servers. Finally we have a ZFS filesystem on the storage
servers, solrdata, that is mounted on both application
servers. Six Feet Up wrote a ZFS snapshot management
package called The Fortville Snapshot Distribution, or FSD
for short. FSD takes snapshots of the important filesystems
and replicates them from our primary storage server onto
our secondary storage server, as well as an off-site tertiary
storage server. This provides redundancy of important
data, as well as a way to roll back time to any five minute
interval within the previous 24 hours, or any hour within the
previous month without going to the backup system. As a
side note, some of the work that went into FSD has been
used in recent versions of FreeNAS 8.

The redundancy in the hosting stack has allowed
multiple FreeBSD system and software upgrades while
the site is live by upgrading half of the stack, triggering a
failover, and then upgrading the other half of the stack.

Overall, the networking configuration and tools
deployed have provided 99.995% uptime to date; which
is significantly above the customer requirement we are
required to maintain. The combination has allowed us to
provide our client with the reliability and speed needed for
a modern, high performance web application with a level
of automation which keeps management overhead within
reason.

LARS R. NOLDAN
Lars has over 14 years of technical experience, including
open source server administration. For the last three years
Lars has worked as a Systems Administrator for Six Feet Up –
managing approximately 100 servers and another 200 jails
running FreeBSD. He has extensive experience with web hosting
technologies, focusing primarily on complex deployments in
higher education and Fortune 500 companies.

http://www.bsdcertification.org

11/2011 20

HOW TO A GIS Strategy For Web-Enabled Business

www.bsdmag.org 21

In the previous articles, we have looked at the core
technological nuts and bolts that comprise an
enterprise scale GIS. Rather than focusing on the

technology, in this final article we will look at GIS from
a different angle – culturally – and how to roll-out a
successful system that could potentially revolutionize a
business. While a substantial percentage of this article
will be GIS specific, a lot of the wisdom contained here
will also be applicable to other major projects so I hope
there will be something here for everyone.

Do You Have Buy-in?
In these times of austerity the IT department is a critical
source of innovation and creativity especially in the area
of improving both the business model and generating
efficiencies. As a core business group, IT are often the
first to sense the change of mood at ground floor, in the
marketplace and at management level. Yet, in some
organizations layers of management and bureaucracy
prevent effective communication. Unfortunately, it
has been the authors experience in many businesses
that there is a fundamental disconnect between board
level (e.g. CEO) and IT unless the technologists have
a strong representation via a Chief Technical Officer
or a very senior manager who can be their advocate
and argue their case. This ultimately ends in frustration
for both groups, as IT feel nobody is listening and the

executives feel that IT is not delivering. Ironically, both
groups ultimately want to achieve the same goals,
but are looking at the problem from radically different
perspectives (albeit with entirely different motives
sometimes) and this can end in deadlock or a breakdown
of trust. From senior managements perspective, if the
IT department cannot be trusted to handle the small
matters (e.g. reliable servers, PC’s etc.) there will be
a lack of confidence in IT advising in the very sensitive
area of corporate strategy, especially where technology
will mean a major change in business practice. Likewise,
if management undermine IT (We want system X
from vendor Y regardless of the technological issues
or long term cost) IT can get disillusioned from fire-
fighting and vote with their goodwill or feet. Sometimes
perception is more valued than reality, but the first step
to a successful enterprise system is confidence and trust
from all sides. The same applies in the other direction, if
senior management do not have buy-in from the users,
the change in business practice that technology brings
will be resisted and potentially in some cases even
sabotaged. Again, this is where IT can offer an invaluable
service to the CEO in helping to identify how technology
can make life easier and better for both the customer
and the employee alike. Once trust is developed across
the organization, the door is then open for everybody to
contribute to innovation and moving the system forward.

A GIS Strategy
For Web-Enabled Business

In this final article in our GIS series, we will look at how to
successfully manage and commission a complex GIS project

What you will learn…
• How to plan and commission transformational technology

What you should know…
• Previous FreeBSD GIS tutorials in this series

11/2011 20

HOW TO A GIS Strategy For Web-Enabled Business

www.bsdmag.org 21

– money, time and innovation. Better still, don’t fall for
eloquent sales pitches, smoke and mirrors accounting
and read the contract and licence agreement, preferably
with a cynical lawyer who is on your side. That way you
will not bear the pain further down the road when your
organization wants or needs to change.

The other issue that always raises it’s head is what
happens when a key technological player falls under a
bus? Rather than looking at this from the organizations
perspective (redundancy, risk assessment, having a
very propriety system etc.) I tend to see this as a cultural
barrier. I may be wrong, but in my mind the organization
group-think is more aligned in this scenario to What if he
leaves? This to me is rather sad, as good IT staff are hard
to come by, and really what the organization should be
thinking is how can we use, retain, reward and expand
our talent? Google manages to do this innovatively,
along with a lot of blue-chips, and the concept of staff
being your greatest asset should be embedded at the
very core of corporate culture. Inevitably, there will be
those who wish to progress their careers, sometimes
at much cost to the organization, but in the authors
experience the easiest employers to work for are those
that naturally and successfully manage to embed their
employees into not only the corporate culture, but their
creative vision. Béla Hatvany (of Silver Platter fame)
ran a small entrepreneurial start up in the ‘80’s which I
was privileged to be associated with, and it was evident
that a major contribution to the success of the venture
would be the employees, their synergy and personal
commitment. When the business venture was heading
towards hard times financially, all of the team offered
without being asked what sacrifices they could make
to turn the operation around. Some were even willing
to work for a subsistence salary. How many corporates
today could instill this level of loyalty and drive? The
difference here is that the synergy between team
members and Béla was so strong that his problem was
their problem. Human chemistry, dynamics, personality
and corporate culture all play their part here, but the
energy that is found around a cohesive team that is
allowed to flex their wings and get on with providing an
excellent solution is truly something to be experienced.
Too often, micro-management, not empowering
individuals, and an unwillingness to allow them to make
their own mistakes prohibits creativity, and the net result
is the delivery of the average or mediocre rather than
the superior.

I am not advocating here that management needs to
take a totally hands off approach, rather that boundaries
should be set and the right individuals chosen for the

Realistically, technology is relatively straightforward,
the biggest hurdle is navigating through any cultural
resistance so that we ultimately end up at the position
of continuous improvement inside the organization and
meeting our customers needs externally.

Integration
(Both Human and Technological) is The Key
Legacy systems, vendor lock in, proprietary API’s – all of
these scenarios give IT departments a major headache.
Thankfully, the Open Systems model is gaining ground,
not only with Open Source, but vendors are realizing
now that the era of the closed business model – where
the customer is the milch cow – is rapidly coming to
an end. Where there will be some vendors that cling
to the proprietary model and fight their corner through
the courts demanding justice for intellectual property
rights, those with vision will be getting on with cutting
code, peer reviews, and realizing that the sum is
always greater than its parts. The struggle from the
technological perspective is when a vendor refuses to
take part in organizational change, and either makes
this process financially prohibitive, or worse still refuses
point blank for commercial reasons citing a catalog
of reasons. Without naming any names, the author
was once asked by his manager to get the views of
a well known IT vendor on a relatively minor systems
integration project which was of strategic importance. At
great cost to the company (they were blue-chip so they
could afford it!), 2 senior consultants were dispatched
from the vendor for an afternoon meeting to discuss
how this could be achieved. After much coffee and
discussion, both consultants shook their head and their
joint opinion was that a suitable product would not be
available for 18 months at least. Needless to say, the
author rolled out his own solution in 3 countries in 2
months, saving the organization on paper at least the
cost of his annual salary per year. It was fortunate that
the author had a good relationship with his line manager,
as it was understood that the invitation to the vendor
was very much a “box ticking” exercise, and the supplier
had no intention of providing us as the customer with
a workable solution. It would have been easy to feel
undermined but once again it was a good illustration of
corporate politics getting in the way of progress. If the
level of trust had been greater, my employer would have
saved the consultancy fee as well, and the potential
pitfall of alerting the vendor that we were looking at other
solutions.

Ultimately, there are always solutions available to the
integration nightmare, the question is one of resources

11/2011 22

HOW TO A GIS Strategy For Web-Enabled Business

www.bsdmag.org 23

team and they are then allowed to get on with their
specialties. My best GIS functional specification to date
has been a few sketches on the back of some scrap
paper, this means more to me than all the Prince 2
project management software in the universe. Why? It
came from the customer, we both know what we want
to achieve and fortunately we have good synergy.
Sometimes a more formalized structure is necessary,
but I have yet to see an inspired team and hungry
for success fail to rise to the challenge of solving the
problem when confronted with a firm but respectful You
are not giving up until we have a solution. While this
meeting may be over coffee (or in the evening down at
the pub), it is the esprit de corps that delivers, not the
paperwork or the ultimatum.

What Does The Organization Want to Achieve?
People love maps. Google Earth and Google Maps are a
prime example of killer applications that are very hard to
put down. Tie this in with a good user interface, and users
want to explore. This in turn raises the What if? scenario.
Creativity begins to flow, and inevitably there will be a
clash of civilizations, between the flexible analogue of
spatial data and the previous method of measurement.
Customers and requirement will be discovered in new
areas, different perspectives will be developed and
soon the previous ways of the organization will be found
lacking. This is a dangerous time, as alongside the new
technology with all its successes and revelations will be
the temptation to totally replace the current orthodoxy
with the newcomer and in the process throw the baby
out with the bath water. Rinse, wash, repeat. This is the
mantra the vendor doesn’t want you to hear – built in
commercial obsolescence.

The world will change, but provided core systems
are able to both speak and listen (send and receive
information to each other), the solution is simple –
snap more technology on the end. Mr Vendor will not
want his system to be this extrovert, so he will prefer
to provide you with his introverted version of GIS with
his Customer Relationship Management (CRM) system
or whatever the latest understanding is on enterprise
technology. If you couple best of breed with best of
breed, you will end up with a thoroughbred, not a
mongrel. So, the first essential requirement is that your
GIS is truly open as indeed all your systems should be.
The universe needs to expand – not shrink. If you want
your GIS department (or any others for that matter)
to live in a dark corner and not be a core part of your
organization, a closed source solution is therefore ideal
– for the vendor at least.

Once persuaded that a new channel is important, then
two fundamental questions arise. What do you want to
achieve and why do you want to achieve it? I am a firm
believer that killer app 2 in the enterprise will be the
combination of telephony, CRM, GIS and the Internet. Mr
Jones telephones, CTI picks up his caller ID and pulls his
service record and location from the CRM. Meanwhile,
GIS locates the nearest service representative, and at a
click of a button the new service request is passed to the
closest man in the field. Alternatively, CTI passes to GIS
and the call goes directly to the nearest representative.
The possibilities are endless. Mobile applications on the
Iphone etc. can fire directly into a CRM / GIS combination
for the reporting of issues in the field, allowing the
company not only to compose a geographic picture of
where the hot spots lie, but also develop a relationship
with the customer. The reverse scenario is also true, if
you have multiple mobile devices located in your area,
activate them automatically according to region. Region
A likes product B. Region B likes product A. You are a
marketing agency, company C wants to penetrate both
markets, so you beacon their sales representatives with
tailored point of sale and marketing information as they
enter their different territories.

What is more, all these platforms are available on *BSD.
SugarCRM, Geoserver and Asterisk with some glue code
and additional hardware would not be a bad start. Coupled
with the true reliability, security and stability we all know,
this would be a dream development platform.

The key to this is to get together and ask What if? Blue
sky thinking and GIS make great team players.

Data Quality, Gathering and Data Logging
Paradoxically, while an organization is greater than the
sum of its parts, no organization is greater than the quality
of its’ data. Poor quality customer data is the bedrock of
disasters, poor customer PR, financial loss, and ultimately
a blame the system mentality. As we all know, garbage in =
garbage out, so as IT professionals we must continuously
be on our guard to validate any input to our systems.
How can this be dealt with in legacy systems however?
Data matching and cleansing is very processor and time
intensive, even with an army of validators the scale and
complexity can be daunting. Often, the solution is just
flush the database and start again. This goes against the
grain for me, as there is bound to be something important
in there to the business. If your organization is serious
about your data, I would recommend the former route –
cleanse – but use this as an opportunity for some positive
PR and create a feedback loop between yourself and the
customer. Using PR, and / or financial incentives, ask the

11/2011 22

HOW TO A GIS Strategy For Web-Enabled Business

www.bsdmag.org 23

customer to register with you for a discount or a free offer
etc. Again, you have a win-win scenario, you know what
customers are enthusiastic about dealing with you, and
you will get accurate data (you hope!). Better still, get
customer services to phone the customer back just to
make sure the details are correct.

Processes need to be in place not only to ensure
Data Protection standards are met, but the quality of
the data is excellent. Edgar Codd, the father of RDMS,
states in rule 1 – All information in the database is to be
represented in only one way. An organization should be
aiming for disparate systems with a common key (e.g.
a unique property ID or unique customer ID) across
boundaries, rather than replicating the lower level data
or functionality across systems. The problem is not the
data that matches, it is the data that should match but
doesn’t.

GIS is Not Cheap
While Open Source is free, sadly infrastructure isn’t. The
one major lesson I have learned about GIS is that to do
it properly you need decent hardware. Our largest tile-
cache holds over 19 million files on one virtual guest, and
~ 10 million on the other, so JFS was the only practical
option. I thought that 1TB of storage would be more than
enough for my Virtual Machine images, but it would have
been more prudent to have 5TB or a SAN. Geospatial
data takes a lot of space and processing power, so specify
your hardware with more than plenty of redundancy.
Ironically, our Postgres database is actually very lean, the
most CPU load is on the Geoserver processor (8 cores)
and the physical size of the tile-cache.

Interfaces to GIS can be accurate up to 5 centimeters
for professional kit, but in certain environments (e.g.
wooded areas) getting a good lock on a satellite can be a
hit and miss affair. A ground station to provide a reference
signal may be required if pinpoint accuracy is essential.
That aside, GIS location software is used for plotting
Formula 1 cars during the race. Decent GPS kit is not
cheap either, expect to pay > L10K for a highly accurate
ground station in a ruggedised case excluding hand held
units. Consumer grade units vary substantially, and your
accuracy will depend on which country you are in and
what satellites you have access to.

Thanks and Credits
The inspiration for this series of articles would not have
come about if it were not for Copeland Borough Council
moving from a proprietary GIS to an Open Source
platform. The catalyst for this transformation rests with
two individuals, Robin Gawlik of Barrow Borough Council
and Julia Jackson at Copeland, both GIS Information
Officers. The ability to manipulate complex equations,
write great code, think spatially and maintain a good sense
of humor are a rare combination of talents, especially as
I am bereft of any sense of direction whatsoever. Without
the developers, data trustees and the many others in the
GIS community Open Source GIS would not be a reality.
Our collective thanks goes to you all – you know who you
are.

The Barrow GIS system can be found at the link below,
and the Copeland version will be live in the very near
future, as it is currently being tested in-house.

All opinions in this article are purely those of the author
and do not necessarily represent either Copeland or
Barrow Borough Council.

ROB SOMERVILLE
Rob Somerville has been passionate about technology since
his early teens. A keen advocate of open systems since the mid
eighties, he has worked in many corporate sectors including
�nance, automotive, airlines, government and media in a
variety of roles from technical support, system administrator,
developer, systems integrator and IT manager. He has moved on
from CP/M and nixie tubes but keeps a soldering iron handy just
in case.

References
• Béla Hatvany 2000 Miles Conrad Memorial Lecture – http://www.nfais.org/page/46-bela-hatvany-2000
• NFAIS Annual Conference – How to prosper in the era of the Internet
• Robin Gawlik – Inspire Case Study – http://www.lga.gov.uk/lga/aio/20246680
• Barrow Borough Council – GIS system – http://webgis1.barrowbc.gov.uk/webgis/bingis.html

http://www.nfais.org/page/46-bela-hatvany-2000
http://www.lga.gov.uk/lga/aio/20246680
http://webgis1.barrowbc.gov.uk/webgis/bingis.html

11/2011 24

HOW TO Equip Your CA With HSM For <50 Euros

www.bsdmag.org 25

The keys for signing certificates are typically stored
in text files on the file system. Access to the disk
will reveal the keys. An attacker can make a copy

and start issuing certificates outside my control. The
primary design requirement is therefore that private keys
will never be accessible in plain text.

Hardware Security Module
Enter HSM, hardware designed to keep the private key
private. They come in various forms, from an appliance
/ PCI card to a USB token or smart card. PCI cards are
typically encased in metal with features like automatic key
deletion upon physical tampering. They are basically a
dedicated computer running HSM software and using the
PCI bus for interfacing with the host computer. Appliances
are typically these PCI cards in an enclosure providing
networking and rudimentary user control. HSMs can also
have the form of a single chip. These do not have their
own power supply (for deleting keys), but are still a small
computer running HSM software. They can be embedded
on smart cards, in USB tokens or integrated in other
systems like the TPM chip on your motherboard.

Design Choices
For my HSM I decided to use smart cards, because they
are cheap, readily available and easy to experiment with.
The computer hardware is generic FreeBSD supported

platform (i386 in my case, as I am working on putting it
on an ALIX / NanoBSD installation). Attached is a Feitian
SCR310 smart card reader (ftsafe-r310) and a Feitian PKI
card (FTCOS / PK-01C). This reader is cheap, but any
supported reader is fine (see http://pcsclite.alioth.debian.
org/ccid/section.html for the complete list). This card was
primarily chosen for its price and availability. It has lots of
storage memory available (64k), but a limitation of 2048
bits for RSA keysize. Please do your own research on the
types of readers and cards to fit your requirements.

For my production system, I will move to a Gemalto
USB TR reader. It has an adapter so it can be mounted in
a 3.5” floppy bay.

Equip Your CA With
HSM For <50 Euros
With the recent breaches of Certificate Authorities (Comodo,
Diginotar) I wanted to take a closer look at the security
of my own Certificate Authority (CA). This CA is used for
identification and authentication of servers, clients and
users in my home network.

What you will learn…
• How to use smart cards to store private keys
• The use of OpenSSL with a different crypto provider

What you should know…
• Your way around a FreeBSD system
• The basics of a PKI
• Why you need a Certi�cate Authority

Figure 1. Cards

http://pcsclite.alioth.debian.org/ccid/section.html
http://pcsclite.alioth.debian.org/ccid/section.html

11/2011 24

HOW TO Equip Your CA With HSM For <50 Euros

www.bsdmag.org 25

 Nr. Card Features Name

 0 Yes Feitian SCR310 00 00

The reader is recognized by the driver. Let’s initialize the
card by formatting it with a PKCS15 structure. PKCS15
is a cryptographic token information format standard
originally designed by RSA. ISO 7816-15 now manages
the card-related parts of this standard.

pkcs15-init --erase-card

pkcs15-init --create-pkcs15 \

 --profile pkcs15+onepin \

 --auth-id 01 \

 --pin 0000 \

 --puk 123456 \

 --label „ewak.net PKI”

This specific card supports only one user-PIN, so the
pkcs15+onepin profile is used. More advanced cards can
offer more users and role separation.

The PIN for the user (auth-id 01) is set to 0000. If you
want to reset the PIN, you will need the PUK, which is set
to 123456. The label is just a name to identify the card.

The card now has a PKCS15 structure and is able to
store private keys and their certificates.

The software is a clean FreeBSD 8.2 with the following
ports:

• /usr/ports/devel/libccid – interface for USB and serial
smart card readers

• /usr/ports/security/opensc – tools for smart card mana-
gment (in PC/SC mode)

• /usr/ports/security/engine-pkcs11 – engine for PKCS11
support in OpenSSL

• /usr/ports/security/openssl – tools for certificate mana-
gement (in this case)

Due to the many, many dependencies, it will take some
time to install. All default settings for the ports are fine.

There is a number of different CA designs possible.
From very flat (the root CA issues all certificates directly)
to very hierarchical (various sub and sub-sub CA’s issue
certificates on behalf of the root CA). My design has one
root CA with a sub CA per functional area. This is done
for security reasons. First of all, the root CA only has
to sign the sub CA’s. The use and exposure of the root
CA’s private key is therefore very limited. Next to that,
the server sub CA never issues client certificates, so the
VPN concentrator has to trust only the clients sub CA
when validating certificates. Client certificates issued
by the (possibly hacked) server- or user sub CA are not
accepted.

Testing The Setup
After the installation of the software, it is time to plugin the
reader and test the setup. Insert the card in the reader
and run:

opensc-tool --list-readers

 # Detected readers (pcsc)

Figure 2. CA-design

����������� ����������� ���������

������
�������

�������

������
�������

������
�����

Listing 1. Formatting the card

pkcs15-init --verbose \

 --store-private-key ewak.net_Sub_CA_servers.p12 \

 --format pkcs12 \

 --auth-id 01 \

 --cert-label "ewak.net Sub CA servers"

 Using reader with a card: Feitian SCR310 00 00

 Connecting to card in reader Feitian SCR310 00 00...

 Using card driver entersafe.

 Found ewak.net PKI

 About to store private key.

 Importing 1 certificates:

 0: /C=NL

 /ST=GLD

 /L=T******e

 /O=ewak.net

 /OU=Certificate Services

 /CN=ewak.net Sub CA servers

 /emailAddress=certificate.services@ewak.net

 User PIN [User PIN] required.

 Please enter User PIN [User PIN]:

11/2011 26

HOW TO Equip Your CA With HSM For <50 Euros

www.bsdmag.org 27

Importing Keys
It is possible to have the card generate the private and
public keys, so the private key will never be available in
plain text. This is the most secure option, but losing the
card will also make the keys unrecoverable.

Because I already have a CA in place, I started with
importing the existing keys. Generating the keys on
the card will be discussed at the end of this article.
Importing the key material (in PEM or PKCS12 format) is
straightforward (Listing 1).

The user PIN for auth-id 01 is defined during the
initialization of the card, 0000 in this article. It can also be

Listing 2. Contents of the card

pkcs15-tool –-dump

 Using reader with a card: Feitian SCR310 00 00

 PKCS#15 Card [ewak.net PKI]:

 Version : 0

 Serial number : 3021303609260511

 Manufacturer ID: EnterSafe

 Last update : 20110925214004Z

 Flags : EID compliant

 PIN [User PIN]

 Object Flags : [0x3], private, modifiable

 ID : 01

 Flags : [0x32], local, initialized,

needs-padding

 Length : min_len:4, max_len:16, stored_

len:16

 Pad char : 0x00

 Reference : 1

 Type : ascii-numeric

 Path : 3f005015

 Private RSA Key [Private Key]

 Object Flags : [0x3], private, modifiable

 Usage : [0xC], sign, signRecover

 Access Flags : [0x0]

 ModLength : 2048

 Key ref : 1 (0x1)

Native : yes

 Path : 3f005015

 Auth ID : 01

 ID : 53f70c3ea5be9aef27d959c134d8ebe

f77322786

 GUID : {53f70c3e-a5be-9aef-27d9-

59c134d8ebef}

 X.509 Certificate [ewak.net Sub CA servers]

 Object Flags : [0x2], modifiable

 Authority : no

 Path : 3f0050153100

 ID : 53f70c3ea5be9aef27d959c134d8ebe

f77322786

 GUID : {53f70c3e-a5be-9aef-27d9-

59c134d8ebef}

 Encoded serial : 02 01 02

Listing 3. Finding the card slot

pkcs11-tool --module /usr/local/lib/opensc-pkcs11.so

--list-slots

 Available slots:

 Slot 0 (0xffffffff): Virtual hotplug slot

 (empty)

 Slot 1 (0x1): Feitian SCR310 00 00

 token label: ewak.net PKI (User PIN)

 token manuf: EnterSafe

 token model: PKCS#15

 token flags: rng, login required, PIN

initialized, token initialized

 serial num : 3021303609260511

Listing 4. Loading the engine

openssl

OpenSSL> engine dynamic \

 -pre SO_PATH:/usr/local/lib/engines/engine_pkcs11.so

\

 -pre ID:pkcs11 \

 -pre LIST_ADD:1 \

 -pre LOAD \

 -pre MODULE_PATH:/usr/local/lib/opensc-pkcs11.so

 (dynamic) Dynamic engine loading support

 [Success]: SO_PATH:/usr/lib/engines/engine_pkcs11.so

 [Success]: ID:pkcs11

 [Success]: LIST_ADD:1

 [Success]: LOAD

 [Success]: MODULE_PATH:/usr/local/lib/opensc-

pkcs11.so

 Loaded: (pkcs11) pkcs11 engine

11/2011 26

HOW TO Equip Your CA With HSM For <50 Euros

www.bsdmag.org 27

supplied to the pkcs15-init tool by adding the --pin 0000
option. Now let’s see what is on the card (Listing 2).

The import was successful. The info for the PIN, the
private key and the certificate are displayed. Record
the ID of the private key, as we will need it later to tell
OpenSSL which signing key to use. A shorter command
for retrieving this ID is pkcs15-tool –-list-keys. More keys
can be added to the card. My card has three keys for
signing server, client and user certificates.

OpenSSL and PKCS11
OpenSSL can be instructed to use an external crypto
provider for generating and storing key material using

the PKCS11 API, also known as Cryptoki. When using
OpenSSL, we can specify keys on the smart card instead
of a keyfile on the disk. To do this, we need the card’s
slot and the key’s ID. The ID we found using the pkcs15-
tool –list-keys command. The slot can be found with the
pkcs11-tool command (Listing 3).

Slot 1 is our card reader with the correct smart card
(ewak.net PKI) inserted.

Now start an OpenSSL prompt and load the PKCS11
engine: Listing 4.

The engine is loaded and can be used by specifying it in
OpenSSL commands with the following parameters:

-engine pkcs11 \

-keyform engine \

-key slot_1-key_53f70c3ea5be9aef27d959c134d8ebef77322786

For example:

OpenSSL> req -new -engine pkcs11 -keyform engine \

 -key slot_1-key_d893afddc82b28fb539e975b2a3e18efc2f3c474 \

 -out cert.csr –text

(This will create a certificate signing request from the
public key with the id shown.) The use of PKCS11 can
be set in the OpenSSL configuration file by adding the
following lines to your /path/to/openssl.cnf configuration
file (Listing 5). All OpenSSL commands can now be run
using the PKCS11 engine by specifying:

Listing 5. openssl.cnf

openssl_conf = openssl_init

[openssl_init]

engines = engine_section

[engine_section]

[pkcs11_section]

engine_id = pkcs11

dynamic_path = /usr/local/lib/engines/engine_pkcs11.so

MODULE_PATH = /usr/local/lib/opensc-pkcs11.so

init = 1

Listing 6. Signing the certi�cate

openssl ca -config /etc/ssl/openssl.cnf \

 -engine pkcs11 \

 -keyform engine \

 -keyfile 1:53f70c3ea5be9aef27d959c134d8ebef77322786 \

 -cert ewak.net_Sub_CA_servers.crt \

 -in cert.csr -out cert.pem

 Using configuration from /etc/ssl/openssl.cnf

 engine "pkcs11" set.

 PKCS#11 token PIN:

 Check that the request matches the signature

 Signature ok

 Certificate Details:

 -snip- OpenSSL output omitted –snip-

 Sign the certificate? [y/n]:y

 1 out of 1 certificate requests certified, commit?

[y/n]y

 Write out database with 1 new entries

 Data Base Updated

Listing 7. Contents of the card

pkcs15-tool --list-keys

Using reader with a card: Feitian SCR310 00 00

Private RSA Key [Private Key]

 Object Flags : [0x3], private, modifiable

 Usage : [0x4], sign

 Access Flags : [0x1D], sensitive,

alwaysSensitive, neverExtract,

local

 ModLength : 1024

 Key ref : 1 (0x1)

 Native : yes

 Path : 3f005015

 Auth ID : 01

 ID : d893afddc82b28fb539e975b2a3e18e

fc2f3c474

 GUID : {d893afdd-c82b-28fb-539e-

975b2a3e18ef}

11/2011 28

HOW TO

-config /path/to/openssl.cnf –engine pkcs11 \

–keyform engine –key slot_<slot>-id_<id>

at the command line.

Signing Keys
The imported keys will be used for signing certificates.
The OpenSSL command is not that much different from
all available howto’s on setting up a self-signed CA
(Listing 6).

The signing request cert.csr is signed with the specified
private key on the smart card. The signed certificate
is stored in cert.pem. The certificate of the signing
private key is stored in a local file called ewak.net_Sub_CA_
servers.crt. It is also stored on the smart card, but since it
is the public key and meant to be public, storing it on the
local file system is more convenient and poses no security
risk.

Note the different notation of the parameter for the key
selection –keyfile <slot>:<key id>. OpenSSL will otherwise
look for the keyfile specified in your openssl.cnf and fail to
load the key.

Generating Keys
If you do not have an existing PKI or are willing to change
its private keys, you can have the keys generated by and
stored on the smart card. The keys will be generated
with the true random number generator on the card and
will never have touched you computer’s memory or file
system. This is done with the pkcs15-init tool.

pkcs15-init --generate-key rsa/1024 --auth-id 01

 Using reader with a card: Feitian SCR310 00 00

 User PIN [User PIN] required.

 Please enter User PIN [User PIN]:

Both private and public keys are stored on the smart
card. The keys are RSA keys of 1024 bits length. This
public key can now be used for generating a certificate
signing request. First we need the key ID (Listing 7).
Create a signing request from the public key (Listing 8).

The cert.csr file can now be signed as shown before.
The signed certificate can then be stored on the card
using the pkcs15-init tool (Listing 9).

Conclusion
Smart cards can provide a low-cost and relative secure
storage for private key material. This article focused on
the use of smart cards in a CA environment. It did not
focus on storing and using a user certificate for email
signing, storing and using a client certificate for OpenVPN
or storing and using SSH keys. These are all interesting
options I will research further.

Listing 8. Creating the csr

openssl req -new \

 -engine pkcs11 \

 -keyform engine \

 -key slot_1-key_d893afddc82b28fb539e975b2a3e18efc2f

3c474 \

 -out cert.csr –text

 PKCS#11 token PIN:

 You are about to be asked to enter information that

will be

 incorporated into your certificate request.

 -snip- OpenSSL output omitted –snip-

Listing 9. Storing the certi�cate

pkcs15-init –-store-certificate cert.pem –-auth-id

01 \

 --id d893afddc82b28fb539e975b2a3e18efc2f3c474

 Using reader with a card: Feitian SCR310 00 00

 User PIN [User PIN] required.

 Please enter User PIN [User PIN]:

ERWIN KOOI
Erwin Kooi is an Information Security Manager for a large grid
operator. He started with FreeBSD 4.5 and is an avid fan ever
since.

http://www.freebsdmall.com

11/2011 30

ADMIN Terminals Served Up BSD Style

www.bsdmag.org 31

They refuse to let me filter out risky web sites.
I figure if they do their browsing from a remote *nix
session, then I don’t have to worry about them

getting malware on their Windows PC’s. You may have
your own reason for wanting a BSD terminal server.

There are two solutions to this goal: FreeNX
(a compression solution for the X protocol) or XRDP (a
product that wraps the VNC protocol inside Microsoft’s
Remote Desktop protocol). This article will show you how
to use both solutions.

I am admittedly better with OpenBSD than with PC-BSD
or FreeBSD. My understanding is that unlike OpenBSD,
ports are preferred over packages under PC and Free.
This article will therefore use the ports system to obtain
the necessary software.

Prerequisites

• You should understand that PC-BSD is simply
FreeBSD with KDE and an easy to use package
manager installed by default. We can think of PC-
BSD as the desktop version of FreeBSD.

• You need to know how to use the command line
interface.

• You need to have a basic understanding of TCP and
TCP ports.

• You need to have the PC-BSD ports collection
installed. There is an option for this during the PC-
BSD install process.

• It is assumed in this article that you are at the
command line as root (indicated by the # prompt in
the example commands).

• Understand that this is not a solution for screen
sharing or simple remote administration. Our server

will serve multiple networked X sessions to multiple
users at the same time.

• You should have used – at least once – some window
manager/desktop environment other than KDE or
GNOME (eg. Fluxbox, FVWM, IceWM, XFCE, xterm,
etc).

• You need to know the name of your network interface.
Mine is em0. Yours may vary, especially if your PC-
BSD is running in VMware.

• You need to know how to add users. I assume that
you will add users as necessary to take advantage
of your terminal server. Adding users will not be
addressed in this article.

FreeNX
In most cases, FreeNX is going to be the superior method
for turning any *nix computer into a terminal server. It’s
a faster protocol than VNC, and easier to get running on
PC-BSD. First, let’s install FreeNX:

cd /usr/ports/net/freenx

make install

There will be some option screens. Simply accept all of
the default answers. Next we need to have the NX server
start at boot time.

/usr/local/NX/bin/nxsetup

Answer “N” to both of the questions.
Finally, let’s open up TCP port 22 so that we can

connect from a remote host. Edit your /etc/pf.conf file.
Assuming you haven’t tweaked the default firewall rules
with block directives, then you can simply add this line to

Terminals Served Up
BSD Style
I believe there is a splash screen on the PC-BSD installer that
says, “PC-BSD: The Desktop Served Up BSD Style.” It seems
that the desktop BSD would be a good choice for a terminal
server. My personal goal for this project is to provide a safe
browsing environment to VIP’s at my organization.

11/2011 30

ADMIN Terminals Served Up BSD Style

www.bsdmag.org 31

XRDP supposedly has a feature to serve actual RDP
instead of VNC wrapped in RDP; however, you need
something along the lines of xorg-x11-server-rdp.

This doesn’t exist except as an RPM package for a very
old version of OpenSUSE.

It doesn’t work on current versions of OpenSUSE, and
it certainly won’t work under PC-BSD’s Linux compatibility
mode.

Let’s get started. XRDP does not work well with KDE.
You’ll need to install an alternate environment (unless
you intend to use TWM or xterm, which are included by
default with PC-BSD).

If you know how to use ports, then install the environment
of your choice. If you don’t know how to use ports, or if you
want the easiest environment for your luddite customers,
then install GNOME from the software manager. Here is a
list of environments that I tried: Table 1.

Once you have the environment of your choice installed,
we’ll install XRDP and its dependency, TightVNC:

cd /usr/ports/net/xrdp

make install

cd /usr/ports/net/tightvnc

make install

Let’s open up the RDP port on your firewall. Edit /etc/
pf.conf, and add the following line to the end of the file
(remember to double-check the name of that network
interface):

pass in on em0 proto tcp from any to (em0) port 3389 keep state

Now we need to force XRDP to use the environment of
our choice. Edit /usr/local/etc/xrdp/startwm.sh. You will
find a line near the top that reads:

the bottom of the file (remember, my interface is em0; yours
may be different):

pass in on em0 proto tcp from any to (em0) port 22 keep state

Reload the firewall rules:

pfctl -f /etc/pf.conf

Your FreeNX server is now ready. You can connect
with the NX client for whatever operating system your
clients use. Download the client of your choice at http://
www.nomachine.com/download.php. Unfortunately, you will
find that there are no BSD NX clients. Your ports collection
has one based on PC-BSD’s Linux compatibility feature, but
it doesn’t include all of the necessary Linux libraries. There
are many threads to read about getting the net/linux-nx-client
port to work, but I’m not going to address that in this article.

XRDP
As I said before, XRDP is inferior to FreeNX in most ways,
but there are reasons that you may want to use it anyway.
Here are some that I’ve encountered:

• FreeNX uses lossy JPG compression. You will
sometimes notice blurriness in graphics.

• FreeNX can be slower than XRDP in certain
environments. I don’t know why, but I’ve speculated
that one or all of these factors may play a role:
• FreeNX’s encryption.
• The Cygwin layer of the Windows FreeNX client.
• QoS or other scheduling features on your routers.

• RDP-specific features, such as being able to select
the color depth that suits you.

• Lack of a FreeNX client for any BSD.

Table 1. Desktop Environments

Environment Result Command to launch
KDE Very messy & slow. Many artifacts. startkde

GNOME Good gnome-session

Enlightenment Fail enlightenment

Fluxbox Good �uxbox

IceWM Good, but you’ll have to create menus from scratch. icewm

Afterstep Fail afterstep

Windowmaker Good wmaker

TWM Good, but difficult for novice twm

XFCE Good, but difficult for novice xfce

Openbox Good openbox

Xterm Good, but difficult for novice xterm

http://www.nomachine.com/download.php
http://www.nomachine.com/download.php

11/2011 32

ADMIN

SESSIONS=”gnome-session blackbox startxfce4 startkde xterm”

Edit that line to have ONLY the command for the
environment of your choice. Use the table above to find
the commands for some common environments. I’m
using GNOME, so my line looks like this:

SESSIONS=”gnome-session”

Next we’re going to edit /usr/local/etc/xrdp/xrdp.ini to
remove options that we don’t need (and might confuse
our luddite customers). Delete the following line, and
delete every line below it:

[xrdp2]

By default, XRDP wants us to create groups where
users will be added to if we want them to have access
to XRDP. The easiest thing to do is just give access to
everybody. Edit /usr/local/etc/xrdp/sesman.ini, and find
these lines:

TerminalServerUsers=tsusers

TerminalServerAdmins=tsadmins

Just change tsusers to users, and change tsadmins to
wheel. The last thing to do is have XRDP start at boot time.
Add the following to the bottom of your /etc/rc.conf file:

/usr/local/sbin/xrdp

/usr/local/sbin/xrdp-sesman

To start XRDP without rebooting so that /etc/rc.conf can
do its job:

/usr/local/sbin/xrdp && /usr/local/sbin/xrdp-sesman

Now this is important: Newer versions of Microsoft’s RDP
client (mstsc) will cause XRDP to use 100% of your CPU
until you reboot the server or kill the process like this:

kill -KILL xrdp

The trick is to get a copy of rdesktop that has been
precompiled for Windows. I found one here: http://
www.atomice.com/blog/?page_id=9.

You can create batch files to launch rdesktop for your
customers. The following would work fine (assuming that
rdesktop is somewhere in your Windows PATH):

rdesktop -g 1024x768 xrdpserver.mydomain.com

You’re Done!
Whether you’ve used FreeNX or XRDP, you’re done.
We now hope that our customers enjoy using their new
terminal server.

TOBY RICHARDS
Toby Richards has been a network administrator since 1997. He
considers himself to be a jack of all operating systems, but a true
master of none. He feels this to be a mastery in its own right since
he understands principles that are common to all operating
systems. His articles are the product of teaching himself to
become better with OpenBSD and PC-BSD. He simply writes
about what he has learned most recently. For a hosting provider,
he highly recommends bsdvm.com. They give you access to your
VMware console so that you can re-install your OS at will, and
with the settings of your own choosing.

Figure 1. PC-BSD on a terminal

http://www.atomice.com/blog/?page_id=9
http://www.atomice.com/blog/?page_id=9
http://bsdvm.com

http://bsdmag.org

11/2011 34

ADMIN OpenBSD Kernel Memory Pools: Monitoring Usage With Systat

www.bsdmag.org 35

A memory pool, in its simplest form, is a pre-allocated
list of fixed sized pieces of memory. Memory pools
can ensure availability of memory resources,

allow for more efficient memory allocation and reduce
memory fragmentation. Both NetBSD and OpenBSD
implement memory pools in their kernels. FreeBSD uses
a ‘slab allocator’ which is an extension of the functionality
provided by memory pools. NetBSD also implements
the extended functionality of slab allocation on top of its
memory pool implementation.

The first section briefly describes the systat(1) utility.
The second section explains how memory pools are more
efficient for certain types of dynamic memory allocations
and reduce fragmentation. The final section looks at the
output of the systat(1) utility and explains the aspects of
the OpenBSD pool implementation which are relevant for
understanding the statistics as reported by systat.

Systat(1) Utility
The sysat(1) utility displays a range of system statistics
in a format similar to the familiar top(1) command, taking
over the entire terminal and refreshing the values at
specific intervals. Related statistics are grouped together
and displayed on a single screen called a view. Different
views display different statistics; for example, the iostat
view displays statistics related to I/O activity, and
the malloc view displays statistics on kernel memory

allocations which use malloc(9). The vmstat view, which
is the default, is unique in that it displays an overall
picture of system activity including statistics on interrupts,
memory usage, process activity and filesystem activity.
On OpenBSD, one can switch between views using the
right and left arrow keys.

The systat utility first appeared in 4.3BSD and is
available on FreeBSD, NetBSD and OpenBSD. The
implementations are only slightly different – the set of
views available are not exactly the same, and navigation
from one to the other is invoked differently. It is necessary
to read the manpage on the particular system to learn
the specific details of the implementation. Many of the
statistics presented are available via other standard
utilities from which the views take their names, e.g.,
netstat, iostat, vmstat. The particular systat view discussed
in this article is the pool view and is only available on the
OpenBSD implementation of systat. However, the same
statistics can be seen using vmstat(8) with the -m option
on NetBSD. On FreeBSD, vmstat -z will show statistics
for zones, which are the equivalent of pools in the slab
allocator implementation. This article does not discuss
aspects of slab allocation.

Memory Allocations
Memory allocations in the kernel occur frequently. It is
therefore important that these allocations be fast and

OpenBSD Kernel
Memory Pools:
Monitoring Usage With Systat

This article explains how to understand memory usage
statistics for kernel memory pools as they are displayed by
the systat(1) command on OpenBSD.

What you will learn…
• Basic understanding of kernel memory pools
• Understand statistics regarding usage of kernel memory pools

What you should know…
• A page of memory – a �xed sized piece of memory (typically 4k in

size) used by memory management system

11/2011 34

ADMIN OpenBSD Kernel Memory Pools: Monitoring Usage With Systat

www.bsdmag.org 35

implementation in OpenBSD as an example, memory for
a given pool is allocated in 4kb pages. If a single page can
hold 20 pool items, then a single memory allocation for a
pool creates 20 of these items which become immediately
available for use by the pool owner. The same benefits
exist for freeing memory. A single free operation releases
multiple items with one function call. Also, because the
items in a pool are of identical size, memory fragmentation
is reduced when the page is divided up.

Output of the Systat(1) Utility
The remainder of this article looks at the interface and
implementation of memory pools in OpenBSD and
explains the pool usage statistics as they are displayed
by the systat utility.

The pool(9) manpage describes the interface through
which different parts of the kernel can initialize and destroy
pools, get and return pool items, and set other parameters
for pool management such as upper and lower bounds
on the pool’s resources (pool items or pages of memory).
These interface routines, as well as the backend functions
which implement them are in sys/kern/subr_pool.c. The
various pool related structures and other declarations are
in sys/sys/pool.h.

A kernel memory pool is initialized with the pool_init()
function. pool_init() does not immediately allocate any
resources. This step is normally deferred until the first
request for an item in the pool. The pool_prime() function
can be called to preallocate a specified number of items
to the pool, but this function is not used in most cases.
Although the GENERIC kernel creates many pools at
system boot time, it is not unusual for several of them to
never receive a request for items during the uptime of the
system.

A pool dynamically manages its own resources based
upon increased or decreased demand. Each pool tracks
the number of items it has available for allocation.
This number is decremented with each allocation and
incremented as items are returned to the pool. If a pool
is depleted (i.e., the number of available items is 0),
additional memory will not be allocated until there is
another request for a pool item. If, on the other hand, a
lower bound has been set and fulfilling a request will bring
the number of available items below the lower bound,
then additional memory will be allocated to the pool before
the request is completed.

Figure 1 is an example of output from the systat pool
command. The top line shows the number of users on the
system, the load averages and system date/time. In the
middle of this line, in parentheses, is the number of lines
visible in the terminal window and the total lines output in

efficient. Since the kernel manages the entire system, if
kernel performance is slow, it impacts the performance
of the system as a whole. Many requests for kernel
memory occur as user level programs make system
calls. If satisfying these memory requests is inefficient,
performance of user programs will degrade.

Typically, the kernel’s general purpose memory allocator,
malloc(9), takes a request for an arbitrary piece of memory,
rounds it up to a power of 2, and returns that amount of
memory to the caller. For some types of allocations, this
isn’t inefficient. However, for memory requests which are
large or of an odd size (i.e., not a power of 2), this can
waste memory through fragmentation.

The kernel often requests pieces of memory of an
identical size and which are used for identical purposes.
For instance, whenever a new process is created on
the system, the kernel must allocate memory for a
structure to hold information about the process such as
the PID, information about signals and CPU scheduling,
etc. Similarly, a vnode structure must be allocated for
vnode operations, socket structures for opening network
connections, and filedesc structure for open files. Due
to the various characteristics of these structures (in
particular, their size and the frequency in which they are
allocated), using the general purpose memory allocator to
satisfy these requests is sub-optimal.

A memory pool is an optimization whereby multiple fixed
sized pieces of memory are set aside for exclusive use
by a specific part of the kernel. These fixed size pieces of
memory are called ‘pool items’ and the part of the kernel
which initializes and uses the pool is the ‘pool owner’. A
pool can guarantee that a minimum amount of memory
will be available to satisfy requests from the pool owner
independent of the available memory allocated by the
general purpose allocator. Each pool is dedicated to serving
requests for memory for one type of data structure (vnode
structure, process structure, etc). The size of each pool
item is the size fo the data structure to be stored in the pool
(e.g., on OpenBSD, each item in the socket pool is 424
bytes, which is the size of the socket data structure). When
the kernel needs one of these structures, it calls a routine
which retrieves an item from the appropriate pool. When the
structure is no longer needed (e.g., when the process exists,
the socket or file closes), the item is returned to the pool
where it can be used again the next time memory for that
particular type of structure is needed.

An important optimization (whose implementation
isn’t limited to memory pools) is the pre-allocation of
memory. This a achieved by making a single request for
a large chunk of memory and carving up that chunk into
smaller pieces which are ready for use. Taking the pool

11/2011 36

ADMIN OpenBSD Kernel Memory Pools: Monitoring Usage With Systat

www.bsdmag.org 37

this view. On this machine, there are 123 pools, but only
the first 46 are visible. The up/down arrow keys or the
pageup/down keys will either scroll or page up/down to
display the additional lines of pool statistics. The default
is to refresh the screen every 5 seconds with new values.
The p command will pause the refresh operation.

The output displays values pertaining to pool items
and pool pages. The values in the first four columns
after NAME apply to pool items; the last 5 columns of
output pertain to pages of memory. The following briefly
describes the values in the columns:

• NAME – the name of the pool
• SIZE – the size of the pool item in bytes
• REQUESTS – total number of requests for this pool

item since the pool was initialized
• FAIL – total number of failed requests
• INUSE – total number of pool items currently

allocated and in use
• PGREQ – total number of pages allocated to this pool

since initialization
• PGREL – total number of pages released from the

pool since initialization
• NPAGE – total number of pages currently allocated to

the pool

• HIWAT – the most pages concurrently allocated to
the pool since initialization

• MINPG – minimum number of pages to retain in the
pool

• MAXPG – maximum number of idle pages to keep in
the pool (default value is 8)

• IDLE – number of idle pages, i.e., pages from which
no items have been allocated

There are four ordering options which are invoked by
single key commands:

• N – order alphabetically by NAME
• Q – order by value in the REQUEST column
• Z – order by total amount of memory allocated from a

given pool (SIZE * INUSE)
• P – order by value in the NPAGES column

The r command will reverse the given sort order. The
o command will cycle through the orderings as listed
above.

The name of the pool and the size of the items are set
when the pool is initialized with the pool_init() function.
REQUESTS is a running total of requests for items since
the pool’s initialization.

INUSE is the total number of
items which have been allocated
from the pool and are actively being
used in the system. This value will
decrease as items are returned to
the pool. Also, this value, when
multiplied by the size of the pool
item yields the amount of memory
(in bytes) which has been allocated
from this pool and is actively being
used. The third ordering option
mentioned above, invoked using
the Z command, orders the pools
by this derived value (INUSE *
SIZE). There is potential confusion
on this point, as the systat(1) man
page refers to this as an ordering
by size, which could lead one to
expect an ordering by values in the
SIZE column.

Each pool item is associated with
exactly one page of memory in the
pool, and each page is kept on
exactly one of three lists depending
upon how many of its individual
pool items have been allocated: Figure 1. /usr/bin/systat displaying output for the ‘pool’ view

11/2011 36

ADMIN OpenBSD Kernel Memory Pools: Monitoring Usage With Systat

www.bsdmag.org 37

one list for full pages – pages which have allocated all
their items and cannot satisfy any more requests; another
list for empty pages, which have none of their items
allocated; and the third list for partially full pages – pages
which have some items allocated but still have more
available to satisfy additional requests. As pool items
are allocated or returned to the pool, these pages will be
moved from one list to the other as their status changes
from being either full, partially-full or empty. Pages which
are ‘empty’ are also called idle pages and their count is
displayed in the IDLE column of Figure 1.

There are three functions available to explicitly set upper
and lower bounds on the resources (pool items or pages
of memory) in a given pool. pool_sethardlimit() sets the
maximum number of pool items which can be allocated
at one time. This value (which is not displayed by systat)
defaults to the maximum of an unsigned 32-bit integer.

The pool_setlowat() function sets the lower bound on the
number of items to keep in the pool for further allocations.
If an allocation will cause the number of remaining items
in the pool to decrement below this low watermark, then
the backend routine, pool_catchup() will be called before
completing the allocation. pool_catchup() will request more
pages of memory from the system; these pages will be
used to replenish the number of available pool items.

Setting upper bounds establishes thresholds which
define when memory should be returned to the system. If
a spike in demand requires committing additional memory
to a given pool, then this memory should be returned the
system once demand has subsided and the memory
is no longer needed. The set_hiwat() function sets the
maximum number of idle pages (i.e., empty pages) to
keep in the pool; this is the value in the MAXPG column of
Figure 1. If, as items are returned to the pool, the number
of idle pages exceeds the value set by this function, the
idle pages will be taken out of the pool and returned to
the system. By default, this value is set to 8. The value
in the IDLE column should never exceed the value in the
MAXPG column.

Both pool_setlowat() and pool_prime() will set the value in
the column MINPG. This is the minimum number of pages
to keep in the pool. The default value is zero.

There are two scenarios in which a request for a pool
item can fail and increment the value in the FAIL column.
If a request is made for an item and the hard limit has
already been reached, the allocation routine checks
whether the requestor set the PR_WAITOK flag, in which case
the routine will wait until the number of pool items in use
drops below the hard limit (i.e., an item is returned to the
pool) before fulfilling the request. If the PR_WAITOK flag is not
set, then the routine will log a message that the hard limit

has been hit, increment a counter that tracks the number
of failed requests and return immediately. The other case
occurs if a pool is depleted and has no more items to give
out when a request is received. If the PR_WAITOK flag is not
set as part of the request and the attempt to allocate more
pages of memory from the system fails, then the request
will be unsuccessful and the number a failed requests will
be incremented.

The values in the columns PGREQ and PGREL are
simply running totals of the number of pages either
requested or released back to the system by the pool
backend routines. The HIWAT value is the highest number
of pages ever allocated to the pool at one time since its
initialization (N.B. – not the value set by set_hiwat()).

Some of the pools created by the kernel are used for
internal operations. Others are for handling operations
initiated from programs in the user space. Watching
the statistics as they are refreshed, one can easily see
the backend memory management activity at work,
requesting more pages to meet the demand for more pool
items. To demonstrate quite obviously, one can execute
the find(1) command over a directory with many files
(the /usr directory, for example). This causes a dramatic
increase in demand for vnode structures as can be seen
by the spike in the number of requests for memory from
the vnode pool. As the items are removed from the pool,
the backend pool allocator requests more pages of
memory to keep up with the demand. This accordingly
increments the number of pages requested (PGREQ) and
pages in use (NPAGE).

Conclusion
Monitoring kernel pool memory usage provides a glimpse
into the activities of the running kernel. Pools provide an
efficient method for dynamic memory allocation and are
used for memory structures which are often allocated
and are of odd sizes. Using pools can reduce memory
fragmentation which might otherwise occur if memory
were allocated using the general purpose allocator. If
required, pools can be used to guarantee that parts of
the kernel will continue to have memory available for their
operation regardless of other memory constraints on the
system. The systat utility in OpenBSD (and the vmstat
utilityin NetBSD) return statistics about activity in the pool
subsystem.

PAUL MCMATH
Paul McMath has worked as a Unix admin for 10+ years
in Europe and the United States. He has been using one
BSD variant or another as his OS of choice since 2002.

11/2011 38

LET’S TALK FreeBSD 8.2 Against Ubuntu Server 11.10

www.bsdmag.org 39

FreeBSD is the dominate title holder in the BSD
based OS market, but how does it compare to an up
and coming challenger if that perspective of Open

Source server platforms is broadened? We’ll take a wide
and ranging look at the strengths and weaknesses of each
platform and let the reader decide. We’ll look specifically at
Canonical’s latest release of Ubuntu Server, Oneric Ocelot,
11.10, and the latest release of FreeBSD, 8.2.

Installation Media
FreeBSD is primarily distributed on CD iso’s either as a
full size distribution weighing in close to 700 megabytes,
or also as a lightweight net-install if you have a good
bandwidth to the Internet or local ftp source. Options
are also available for USB thumb-drive installs as well.
Note, internet connectivity is not generally needed for
standard CD distributions, either the 32 bit or 64 bit
versions.

Ubuntu Server is distributed as well in CD iso format,
as well as a distribution that can be used on a thumb-
drive. Both 32 bit and 64 bit versions are available as
well. Internet connectivity is highly recommended as
the installer downloads the latest packages from the
repository during the install.

The Install Process
FreeBSD’s installer hasn’t changed much in the 15
years that I’ve used it, since early 4.6 days... You
have the quick, and expert modes, of course, and
the most flexibility of disk layouts. The 8.x releases
give more choices of filesystem types, including ZFS.
One thing I have found annoying is the default sizes
of /var are in most instances much too small for most
configurations.

Although the FreeBSD appears to be a bit archaic, it is
worth pointing out that FreeBSD’s simple CUI interface
allows the OS to be installed on devices that don’t have a
graphical display output, and only have a serial console.
Examples would be the Alix SBC, and other server
platforms such as DEC Alpha’s and DecStations.

The typical steps of creating the partition table, allocating
slices, filesystems, follow and are pretty straight forward.
Once the initial install is through, a myriad of other steps
are necessary, setting the root password, setting up
network interfaces, timezone, enabling ssh, etc, all of
which are post-installation.

Ubuntu Server tends to focus primarily on the PC
enterprise server market though they have recently been
some interest in some of the embedded devices markets.
As such, Ubuntu tends to explore the graphics modes
more freely, switching between various graphics and text
modes throughout the install process. It is possible to
install Ubuntu with a serial console, but it is by no means
as straight forward as FreeBSD is, involving changing
multiple system files, boot-loaders, etc.

FreeBSD 8.2 Against
Ubuntu Server 11.10
An Objective Comparison of Two Power House Open Source
Server Platforms, BSD Unix and Linux.

Figure 1. FreeBSD Main Install Menu

11/2011 38

LET’S TALK FreeBSD 8.2 Against Ubuntu Server 11.10

www.bsdmag.org 39

Ubuntu Server doesn’t

• support kernel ZFS (Sun Zettabyte File System), but
does offer BTRFS

• limit RAM to 4 gig on 32bit hardware (default PAE
kernel included)

• use the Linux 2.6 kernel anymore (as of 11.10)
• install software development tools by default (build-

essential)

Neither include a GUI by default. These are server
operating systems after all.

Package Management
Both Operating Systems support remote package
management and installation. They differ greatly and
functionality.

FreeBSD has two primary methods for
installing applications, Ports and packages

Ports is an organized directory structure of packages,
comprised of pointers to remote locations of each
package’s remote location and dependencies. Executing
a make in a given package directory will retrieve not
only that packages source, but all it’s dependencies and
compile them as necessary to complete the applications
build from source.

eg:

 $ cd /usr/ports/shells

 # [/usr/ports/shells]$ cd bash

 # [/usr/ports/shells/bash]$ make; make install

//compiles and installs

Packages are compiled and complete compressed
installation binary bundles of a given application and can
be installed without compiling from source. An example
would be to install the Bash shell after an initial install.

Ubuntu’s boot screen launches the user into an menu
that allow a prompted install, and gives the user the
chance to choose a guided disk layout or manual if
preferred.

Ubuntu doesn’t by default enable the root account, and
in fact, requires the creation of a user account during install
that will be in the sudo group. That information is collected
after the disk layout is chosen, and the user account is
created during the install. Networking, timezone setup are
done during the initial installation process.

One handy feature of the Ubuntu Installer is the
Software Selection Box, or tasksel as it is called from
the command line. It lets you select several of the most
common packages or configurations from one selection
box.

Typically, you might select to install SSH, or a full LAMP
(Linux, Apache, Mysql, and PHP) stack. This is quite
handy, as the installer not only install and configures
Mysql, but let’s you set the mysql root password from
dialog boxes. No extra steps are necessary, and your up
and running with a LAMP server. One note, Ubuntu is still
shipping Mysql 5.1 from it’s repositories, rather than the
more commonly available 5.5. Some differences each of
the Installers:
FreeBSD doesn’t

• require or expect Internet access
• initially configure network interface (post-install)
• include a bash shell by default (available as a

package)
• require a video display adapter

Figure 2. Ubuntu Server Main Install Menu Figure 3. Software Selectio

11/2011 40

LET’S TALK

This would be easily done in Packages by typing:

 # pkg_add -r bash // This will retrieve and

install the binaries.

The FreeBSD package management system is both
wonderful and a cause of frustration. It’s design is limited
it’s handling of dependencies of local packages. This can be
a real irritation if you are installing a local package that has
many dependencies. The dependencies have to be installed
manually via pkg _ add -r some _ pkg, before the local package
will install. This is inherent in Pkg’s original design for the
packages to be hosted by FreeBSD’s main package sites.

Ubuntu Server Uses The Package System That
It’s Parent Os, Debian Uses, Called Advance
Packaging Tool, or APT

It can also handle Redhat packages, using RPM, but
APT is the primary method. APT uses a local cache
of remote repositories for tracking and updating both
system and other package databases.

Once the server is up and on the network, executing
the following commands will update the database caches
locally, and allow searching for packages.

 $ sudo apt-get update // Update caches from

repositories

 $ sudo apt-get upgrade // Upgrade installed packages

 $ sudo apt-cache search python // search for

available package called python

Additional packages can be added to the servers list of
sites, simply by the repository to the list of apt sources. A
very flexible system and works well.

Con�guration Files
FreeBSD uses a single system config file, /etc/rc.conf
which is read by individual startup files in /etc/rc.d and
it’s child directories... Network interface configuration,
enabling the startup and options to various options are
accomplished in /etc/rc.conf.

Ubuntu Server uses /etc/network/interface for the
primary interface configurations and /etc/init.d for startup
of various system and other applications. Both OS’s use
/var/run and /var/log for obvious reasons.

Performance, How Do They Stack Up?
This is one subjective issue, that has as many questions as
answers... Ubuntu Server is the most similar to FreeBSD,
as far as the variants of Linux’s go. Each performs well, in a

variety of high load areas. I use both systems in similar load
conditions, and each has it’s own distinct advantages.

FreeBSD’s ZFS filesystem, has proven to outperform
the Linux EXT4 filesystem on the same hardware, under
high i/o load. Note, ZFS requires 64bit hardware and a
minimum of 4 gigs of memory for successful operation.

FreeBSD also seems to have an edge in network
i/o under similar high load udp network load. If ZFS
filesystems are not used, then Ubuntu Server performs
much better with EXT4 against FreeBSD’s aging UFS2
filesystem. Ubuntu seems to better utilize the cache buffer
than UFS does.

Ubuntu’s has a pretty nice implementation of Logical
Volume manager, which is tightly integrated in the the
installer, and can be enabled during the partitioning phase
of installation. It’s well designed, if software raid is desired.

The FreeBSD kernel has other performance advantages
over the typical Linux kernel, enough so that Debian released
it’s distro with a FreeBSD kernel, called KFreeBSD.

Ubuntu Server does virtualization very well, if you have
the hardware for it. The latest release 11.10 offers Xen,
and KVM. Other layer 2 hypervisors work just as well,
like VirtualBox, which is my favorite. The VM Host in my
office is running Ubuntu server with 2 FreeBSD VM’s and
another Ubuntu Server VM’s all happy in 4 gigs of ram.

FreeBSD and Ubuntu Linux, though from completely
different lineages, share many common traits, and can
work well together.

BILL HARRIS
Bill Harris has 27 years experience in programming and Unix/
Linux Administration. His work experience includes data center
environments as well as education IT. He hold a General Class
Amateur Radio license, and enjoys working with the processing
of realtime weather data.

On the ‘Net
• Ubuntu Server – http://www.ubuntu.com/business/server/

overview
• Debian KFreeBSD – http://wiki.debian.org/Debian_GNU/

kFreeBSD

http://www.ubuntu.com/business/server/overview
http://www.ubuntu.com/business/server/overview
http://wiki.debian.org/Debian_GNU/kFreeBSD
http://wiki.debian.org/Debian_GNU/kFreeBSD

http://www.exonetric.com

11/2011 42

EUROBSDCON OVERVIEW EuroBSDcon 2011 From An Organizers Perspective

www.bsdmag.org 43

The announcement was made that the 10th
EuroBSDcon would take place in the Netherlands
from the 6th to the 9th of October 2011. Announcing

exact dates without having done proper research was not
a smart move as we learned along the way...

Organizing a conference is simple. You just need a
venue, a website, some hotel arrangements, speakers,
a registration system, a lot of visitors, some money and
you’re done. Right?

As it turned out it was not that easy. Finding the right
location was the first challenge. Some of the places we
looked into were not available during the conference
dates. Like Eindhoven for example, which was going to
be closed on the 9th because of a marathon. This limited
our choices. Apparently we should not have announced
a date up front before doing our research. Fortunately
due to RedHat (yes, Linux) we stumbled upon Meeting
Plaza in Maarssen. One of their big advantages is their
pay per visit model, which makes conferences more
easily scalable. Instead of paying per room, a bit extra for
using beamers and AV, some more extra for Wifi internet,
and even more extra for coffee, tea, lunch, etc. Meeting
Plaza just charges a fixed price per person which includes
everything what is needed.

Meeting Plaza’s scalability was exactly what we were
looking for. Despite having a lot of sponsors from the
beginning, our calculations showed that it would be nearly
impossible to invite all the speakers that we wanted. By
the end of August we were determined to make every
penny count. Then, unexpectedly two other companies
contacted us and offered their support. We gained two
additional platinum sponsors this way, what gave us the
financial room we needed to make the conference a real
10th anniversary and to invite more speakers.

Our last challenge was to attract enough visitors. For
that we needed a registration system online by the middle
of June. Unfortunately, it went live in the mid of August.
How did that happen? Well, registration systems are
more complex than we expected. They typically consist of
a website and a payment module. The payment module
communicates with a payment provider which talks with
a bank. We faced difficulties with procedures and had
contract issues. We were even rejected by one bank,
because we were in the Netherlands...

Hotel arrangements were also a challenge. We
learned that there was an electronics fair in Utrecht
that same weekend, making it difficult to find affordable
accommodations. As I mentioned before, we should have
done some research before announcing the date of the
10th EuroBSDcon.

Finally, after months of work and planning, Thursday
the 6th of October 2011 came. At 8:00 we started to get
everything ready in order to open the registration desk at 9:
00. Around 8:30 the first enthusiastic visitors showed up. We
quickly improvised a sign indicating that registration would
open at 9:00 and that breakfast was served on the first floor.
At 9 o’clock we opened up the registration and everything
went quite well, until a few minutes passed 10 o’clock.

A few minutes after the tutorials started, the first
complaints arrived. There were not enough IP addresses
in the DHCP range. The internet came with the venue, so
we contacted them and they started to call their network
provider, to get the problem solved. Unfortunately it could
not be fixed until the next day.

On Thursday we had two tutorials, one by Kirk McKusick
which is always interesting if you want to know more
about the design behind FreeBSD. The other tutorial was
the most visited tutorial of the conference: pfSense 2.0

EuroBSDcon 2011 From
Organizers Perspective
Although the idea of the EuroBSDcon 2011 was born during
the EuroBSDcon 2009 in Cambridge, the preparations for
the event actually started in 2010 in Karlsruhe, where some
Dutch people offered to organize it.

11/2011 42

EUROBSDCON OVERVIEW EuroBSDcon 2011 From An Organizers Perspective

www.bsdmag.org 43

PF this is a tutorial you should have attended. The third
tutorial track on Friday consisted of two half day tutorials.
The first being a Dtrace tutorial by Tod McQuillin. Some of
the participants of the conference told me that they saw

great benefit from having Dtrace available for them. In the
afternoon Tod’s tutorial was followed by a NETGRAPH
tutorial by Adrian Steinmann, which gave great insights in
what NETGRAPH can do. On Saturday, the conference
really started.

Hans van der Looy had the honor of giving the first
keynote of the conference or we had the honor of having
Hans as a keynote speaker, depending on how you look at
it. Hans took the audience on a tour through the DigiNotar

by Chris Buechler and Ermal Luçi. This tutorial covered
many of the features and changes in the 2.0 release from
the perspective of new and existing users. Unfortunately
with so much information to cover, the tutorial went well

beyond the allocated time and we had to cut it short
because the room was booked for another event in the
evening.

On Friday Kirk continued with the second part of his
An Introduction to the FreeBSD Open-Source Operating
System tutorial. The next tutorial track featured Peter
Hansteen, who gave his tutorial on PF, which provided
updates on the new PF syntax and features introduced
since OpenBSD 4.7. If you work or want to work with

����
����������

11/2011 44

EUROBSDCON OVERVIEW

incident and explored some alternatives for the trust issue
online. This resulted in a discussion between Hans and
Henning Brauer about viable alternative protocols. The
takeaway message was that it is hard to establish real
trust online when everybody lies (sometimes).

The keynote was followed by talks about IPv6 on
FreeBSD, Open vSwitch, Testing NetBSD automagically
and the 10th anniversary of PF.

During the lunch break one of our sponsors treated us
to a dutch specialty (poffertjes – kind of small pancakes)
which were served on the ground floor, close to the
entrance. Having all previous lunches on the first floor, a
lot of people stayed there. So it was my job to walk to the
first floor to point out the poffertjes to the visitors. On my
way to the lunch room I ran into some colleagues, who
asked if we had everything under control. Optimistically,
I responded with yes, which proved to be a bad idea.
Pascale, one of the crew members, touched me on the
back and uttered: We do have a problem. At the same
time the smell of burned plastic reached my nostrils. Time
to turn around and take a look. As it turned out a power
bar had burned through due to the difference in voltage in
Europe and the USA. Anyway, this smell of molten plastic
somehow solved the problem by driving our visitors
towards the poffertjes on the ground.

After the lunch break we had to put one of our
contingency plans in place when we had a room overflow
for the NPF talk. Redirecting everyone to the plenary
session room solved this problem easily. The talk itself
presented some really great ideas on handling traffic and
processing the firewall rule set. Besides the NPF talk the
other talks after the lunch break where about Webcamd,
nginx on FreeBSD and OpenBSD’s new suspend and
resume framework. After the tea break another talk about
PBI for FreeBSD and PC-BSD 9. For the people interested
in virtualization the Virtualization under *BSD: the case of
Xen talk provided insight into the Xen hypervisor.

The first conference day finished with the always
entertaining History of BSD by Kirk McKusick, after which
everyone was directed to the buses to get to the social
event at the Dutch Railway Museum in Utrecht. Everyone
got a tour around the Museum, in Dutch or English. In
hindsight we should also have added a tour in German,
but all the ingredients for a social event were present:
interesting location, good food and the ability to socialize.
We got a lot of positive feedback about part of conference.
However it should be noted that it was organized by one
of our sponsors so we can’t claim the accolades. Without
Anja’s and Mona’s experience we would not have been
able to make the social event this good. So we are very
happy they organized it for us.

On Sunday we started with our second keynote
by Herbert Bos called: The eight-fold path to reliable
operating systems. A very entertaining and interesting
keynote about the design choices made in Minix 3.
The most important one being that everything should
keep working despite parts of the system crashing and
restarting. Hopefully this has provoked some thoughts
and ideas to make the BSD’s better.

The first slot after the break featured a capsicum talk by
Robert Watson. Capsicum being a practical approach to
fine grained access control. Another track in this slot was
ideal for who wanted to learn more about Minix after the
keynote. By following the Beastie Meets Raccoon: MINIX 3
as a BSD talk we could learn more about it very quickly.

I think the Sunday program created a lot of hard choices
for the visitors. Multiplicity, FreeNAS or learn more out
how NetBSD started to use the fossil version management
system? Learning more about HAST and run the risk of
missing out the latest developments in OpenSSH? Get
introduced to ZFS from a system management point
of view or get new insights of how to protect your data
nowadays? And if you think these are difficult choices,
remember that by following these you would have missed
the history of sendmail, the obsolescence of the OS,
insights into BSDcertficiation and the porting of OpenBSD
to Sun ultrasparc processors.

We are looking back at the EuroBSDcon 2011 as a
successful, entertaining and interesting conference, which
would not have been possible without the sponsors and of
course all speakers and visitors. It is very rewarding to
see the enthusiasm and hear the positive feedback of
all who visited Maarssen. With visitors from 27 different
countries it is safe to call the EuroBSDcon an international
conference.

At the moment of writing it is still unclear where and
when the EuroBSDcon will be held next year. Hopefully
it will be known very soon. In the meantime we are busy
trying to get the EuroBSDcon Foundation up and running.
The target of the EuroBSDcon Foundation will be to
provide support to the organizers of, share knowledge
about and transfer resources to future EuroBSDcon
conferences. For example in helping with or providing the
registration system.

JEROEN VAN NIEUWENHUIZEN
Jeroen van Nieuwenhuizen was the chair of the EuroBSDcon
2011 organizing committee. In his daily life Jeroen works as a
Unix Consultant for Snow B.V. He came in contact with Unix in
1997 and started to work with the BSD’s in 2002. His free time
activities include reading, recumbent cycling, speed skating and
herding his cats.

I think it’s only appropriate that this magazine comment on the
passing of Apple’s most charismatic co-founder. When I read
Apple’s simple but tasteful words of memorial, I knew what I
wanted to say. From http://apple.com/stevejobs:

Apple has lost a visionary and creative genius, and the world has lost an amazing
human being. Those of us who have been fortunate enough to know and work
with Steve have lost a dear friend and an inspiring mentor. Steve leaves behind
a company that only he could have built, and his spirit will forever be the
foundation of Apple.

Contrary to his company’s tribute to his life, the passing of
Jobs is a loss to more than just Apple, his friends, and his
family. Whether you love or hate Apple and Jobs, nobody can
deny that his contributions to technology reach far beyond his
own company’s products. Here is an excerpt from a February
26, 2004 post on the blog of outspoken FreeBSD community
member, Grant Hayes (aka “Trollaxor”):

The Passing of Steve Jobs:
Not Just Apple’s Loss

… only after Apple started modifying FreeBSD 4.x and submitting their
modifications did FreeBSD progress to the 5.x branch. The advanced VM and
SMP code that allows Mac OS X to run so efficiently is the very same code
that finally put FreeBSD on the level with Linux. I run FreeBSD 5.2 on a four-
way Xeon box at work and thank Apple every day. If it weren’t for the Mach
micokernel from Apple we wouldn’t be able to do these nice things with FreeBSD
now or probably ever.

The work and genius that Jobs put into Apple (especially
after returning from NeXT) has had impacts on several major
players. Android wouldn’t be where it is today if it weren’t
for iOS. Even Microsoft had to follow Apple’s lead in order
to create a Windows Mobile device that can compete. Mark
Shuttleworth openly admits that OS X is the inspiration for his
Ubuntu designs.

Jobs has affected so much more than just what Apple does. His vision sent ripples of positive innovation
throughout the computing industry at large. The BSD community ought to be thankful for the life and work
of Jobs every day.

Rest in peace, Steve.

By Toby Richards

http://apple.com/stevejobs

Next issue is coming in
December!

In the next issue:

- BSD Kernel Compiling
- nsswitch, nscd and caching
- OSPFv6
- and Other !

http://bsdmag.org

�������������������������������������
��������������������������

���

���

��

����������������
����������������������������������

������������������������������������
��������������������������������

http://www.ixsystems.com/

	Cover
	Dear Readers
	Contents
	PC-BSD 9 Turns a New Page
	A Beginner’s Guide to PF
	Creating Your Own PBI Repository
	Speed Daemons
	A GIS Strategy For Web-Enabled Business
	Equip Your CA With HSM For <50 Euros
	Terminals Served Up BSD Style
	OpenBSD KernelMemory Pools: Monitoring Usage With Systat
	FreeBSD 8.2 Against Ubuntu Server 11.10
	EuroBSDcon 2011 From Organizers Perspective
	The Passing of Steve Jobs: Not Just Apple’s Loss

